Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Intervalo de año de publicación
1.
PLoS One ; 15(2): e0229178, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32069302

RESUMEN

Geographical distribution of forest species is closely regulated by environmental conditions, particularly temperature and precipitation. Climate change predicted by general circulation models is expected to modify the distribution of many species' distribution, especially those adapted to extreme environmental conditions, leading to large-scale migrations or local extinctions. The aim of this research was to determine the potential impact of climatic change on Pinus hartwegii geographic distribution and the niche breadth of its populations. Ecological niche models were used by generated with four different algorithms based on 19 bioclimatic variables in addition to altitude. Climatic niche breadth was delimited by the dispersion of species occurrence records within the intervals of the bioclimatic variables. We modelled future distribution based on three general circulation models, MIROC-ESM-CHEM, CCSM4 and HadGEM2-ES, using two representative concentration pathways (RCP) 2.6 and 8.5, for two-time horizons 2050 and 2070. Niche breadth analysis showed narrow ranges of suitability, indicating a strong relationship between the presence of P. hartwegii with the temperature of the warmest quarter and precipitation of the coldest quarter. In addition, the suitability area of P. hartwegii is predicted to be reduced up to 70% by 2070; the populations of the extreme northern and southern latitudes will be reduced in greater proportion than those of central Mexico. This suggest that environmental suitability area of P. hartwegii are reduced by the effect of the increase in environmental temperature. Therefore, it is necessary to monitor extreme populations of this species in the long term in order to establish efficient conservation strategies and well adaptive management facing climate change.


Asunto(s)
Geografía , Pinus , Cambio Climático , Modelos Estadísticos
2.
Braz. j. microbiol ; 49(3): 632-640, July-Sept. 2018. tab, graf
Artículo en Inglés | LILACS | ID: biblio-951795

RESUMEN

Abstract The present study conducted a genetic characterization and determined growth rate and biomass production in solid and liquid media, using strains obtained from wild edible sporomes of Lyophyllum that grow in high mountains. Vegetative isolation was used to obtain a total of four strains, which were divided into two clades within the section Difformia: Lyophyllum sp. and Lyophyllum aff. shimeji. Growth rate and biomass production were influenced by both the culture media and the strains. In a potato dextrose agar medium, the strains presented a higher growth rate, while in a malt extract-peptone and yeast agar medium, the growth rate was lower, but with a higher biomass production that was equal to that in the malt extract-peptone and yeast liquid medium.


Asunto(s)
Agaricales/crecimiento & desarrollo , Agaricales/genética , Cinética , Biomasa , Medios de Cultivo/metabolismo , Medios de Cultivo/química , Micelio/crecimiento & desarrollo , Micelio/genética , Micelio/metabolismo , Micelio/química , Agaricales/metabolismo , Agaricales/química , Fermentación , México
3.
Braz J Microbiol ; 49(3): 632-640, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29482997

RESUMEN

The present study conducted a genetic characterization and determined growth rate and biomass production in solid and liquid media, using strains obtained from wild edible sporomes of Lyophyllum that grow in high mountains. Vegetative isolation was used to obtain a total of four strains, which were divided into two clades within the section Difformia: Lyophyllum sp. and Lyophyllum aff. shimeji. Growth rate and biomass production were influenced by both the culture media and the strains. In a potato dextrose agar medium, the strains presented a higher growth rate, while in a malt extract-peptone and yeast agar medium, the growth rate was lower, but with a higher biomass production that was equal to that in the malt extract-peptone and yeast liquid medium.


Asunto(s)
Agaricales/crecimiento & desarrollo , Agaricales/genética , Agaricales/química , Agaricales/metabolismo , Biomasa , Medios de Cultivo/química , Medios de Cultivo/metabolismo , Fermentación , Cinética , México , Micelio/química , Micelio/genética , Micelio/crecimiento & desarrollo , Micelio/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA