Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Chem Phys ; 158(22)2023 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-37314037

RESUMEN

We introduce a novel thermodynamic model oriented toward accurately predicting the effect of solvent polarity on chemical equilibrium. Our approach is based on the fundamental principles of thermodynamics of continuum medium and can be applied generally to estimate the Gibbs free energy contribution resulting from electrostatic interactions between the solvent and chemical species to the corresponding equilibrium constant in the solution phase. Using a set of assumptions, we have developed a practical calculation methodology that employs multivariate fitting to determine the dependence of 27 different reactions, including tautomerizations, dimerizations, and acid-base dissociations, on solvent polarity. From this approach, we estimated all the contributions to the Gibbs free energy of reaction in the solution phase of some of these processes, including the gas phase Gibbs free energy of reaction, the electrostatic (continuum) contribution to the solvation Gibbs free of the involved solutes and, even, the Gibbs free energy contribution due to specific (intramolecular) solute-solvent interactions, albeit indirectly.

2.
J Comput Aided Mol Des ; 37(7): 279-299, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37245168

RESUMEN

We present a computational strategy based on thermodynamic cycles to predict and describe the chemical equilibrium between the 3d-transition metal ions Zn2+, Cu2+, and VO2+ and the widely used antineoplastic drug doxorubicin. Our method involves benchmarking a theoretical protocol to compute gas-phase quantities using DLPNO Coupled-Cluster calculations as reference, followed by estimating solvation contributions to the reaction Gibbs free energies using both explicit partial (micro)solvation steps for charged solutes and neutral coordination complexes, as well as a continuum solvation procedure for all solutes involved in the complexation process. We rationalized the stability of these doxorubicin-metal complexes by inspecting quantities obtained from the topology of their electron densities, particularly the bond critical points and non-covalent interaction index. Our approach allowed us to identify representative species in solution phase, infer the most likely complexation process for each case, and identify key intramolecular interactions involved in the stability of these compounds. To the best of our knowledge, this is the first study reporting thermodynamic constants for the complexation of doxorubicin with transition metal ions. Unlike other methods, our procedure is computationally affordable for medium-sized systems and provides valuable insights even with limited experimental data. Furthermore, it can be extended to describe the complexation process between 3d-transition metal ions and other bioactive ligands.


Asunto(s)
Antineoplásicos , Complejos de Coordinación , Termodinámica , Complejos de Coordinación/química , Iones , Doxorrubicina , Zinc/química
3.
Phys Chem Chem Phys ; 24(2): 807-816, 2022 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-34908052

RESUMEN

We developed a numerical procedure to compute the electronic temperature and the effective (local) chemical potential undergone by electrons belonging to a particular molecular species. Our strategy relies on consider atomic basins as open quantum (sub)systems within the context of the quantum theory of atoms in molecules. Each basin is represented by the two parameters, the electronic temperature and the effective chemical potential, which are determined by distributing electrons (fermions) imbedded in each atomic region, through a Fermi-Dirac semi-local variational procedure. The results obtained for 40 different chemical species show that the effective chemical potential is a useful tool to reveal the most acidic/basic atoms in a molecule while the electronic temperature is closely related to the concept of chemical hardness at the local level. Our numerical data also indicate that the electronic temperature values undergone by electrons imbedded in atomic basins are way beyond the room temperature condition, allowing to fractionally occupy several of the one-particle quantum states. In this context, we developed two new indexes useful to reveal outstanding orbitals involved in the chemical reactivity of atoms in molecules.

4.
J Phys Chem A ; 124(26): 5465-5473, 2020 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-32501006

RESUMEN

A charge transfer model is developed within the framework of the grand canonical ensemble through the analysis of the behavior of the fractional charge as a function of the chemical potential of the bath when the temperature and the external chemical potential are kept fixed. Departing from the fact that, before the interaction between two species, each one has a zero fractional charge, one can identify two situations after the interaction occurs where the fractional charge of at least one of the species is different from zero, indicating that there has been charge transference. One of them corresponds to the case when one of the species is immersed in a bath conformed by the other one, while the other is related to the case in which both species are present in equal amounts (stoichiometric proportion). Correlations between the fractional charges and average energies, thus obtained with experimental equilibrium constants, kinetic rate constants, hydration constants, and bond enthalpies, indicate that, although at the experimental temperatures, they are very small quantities, they have chemically meaningful information. Additionally, in the stoichiometric case, one also finds a rather good correlation between the equalized chemical potential and the one obtained from experimental information for a test set of diatomic and triatomic molecules.

5.
J Phys Chem B ; 124(16): 3355-3370, 2020 04 23.
Artículo en Inglés | MEDLINE | ID: mdl-32216349

RESUMEN

The Gibbs free energy of complexation between the Zn(II) species and acetate ligands, forming the [Zn(OAc)n]2-n complexes with n = 1, 2 in an ethanol solution, was assessed by two different theoretical protocols based on thermodynamic cycles. In both approaches, the solution phase Gibbs free energy of each reaction is computed by summing up contributions from gas phase thermochemistry calculations to solvation Gibbs free energies obtained in a hybrid fashion, i.e., each (neutral or electrically charged) solute was first solvated by explicit solvent molecules in order to capture relevant (micro) solute-solvent and/or solvent-solvent interactions and then, a continuum model calculation is performed in order to get the corresponding bulky solute-solvent contributions. For our first thermodynamic protocol, here denominated as variant 1, a set of x independent solvent molecules are used to screen each of the involved solutes, while the variant 2 strategy uses the fact that a set of solvent molecules may exist as aggregates (or molecular clusters) in the solvent macroscopic media, before the solvation process of solutes. Our selected quantum theoretical protocol was the M05-2X/6-31+G(d)/SMD level. We made a systematic exploration about the influence of several sources of errors, such as the solvent conformation, the number of solvent molecules used to screen each of the involved solutes, the coordination geometry of the metallic center before and after the complexation process, and the pertinence of using molecular geometries optimized in gas phase and in ethanol solution, for the computation of the Gibbs free energy variation regarding the two chemical reactions under study. We set an accuracy threshold equal or less than 4.0 kcal·mol-1, with respect to the corresponding experimental records. The robustness of our thermodynamic strategies was then tested by computing the gas phase free energy contributions to the (solution phase) reaction free energies here assessed, using different density functional approximations, namely the M05-2X, BH&HLYP, PBE0, ωb97X-D and M06-2X functionals in conjunction with the larger 6-311+G(d,p) basis set.


Asunto(s)
Etanol , Acetato de Zinc , Soluciones , Solventes , Termodinámica
6.
J Phys Chem A ; 123(46): 10065-10071, 2019 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-31670960

RESUMEN

Electronegativity is a fundamental concept in chemistry that allows one to infer important aspects about the interactions between chemical species. In the present work we make use of the framework provided by the density functional theory of chemical reactivity, to discuss in a unified way the approaches to the concept of electronegativity developed by Pauling and by Mulliken. Our analysis starts by making use of the identification of the electronegativity of Mulliken with the chemical potential of density functional theory, and continues to show that the ionic correction proposed by Pauling can be derived, with certain approximations, from the quadratic smooth interpolation of the energy as a function of the number of electrons in terms of the chemical potentials and the hardnesses of the interacting species, from which one can infer the close qualitative relationship between Pauling's electronegativity and the electrophilicity concept.

7.
J Chem Phys ; 151(7): 074105, 2019 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-31438714

RESUMEN

By working under the framework of the Helmholtz potential as a functional of the equilibrium density matrix, in this contribution, we provide theoretical evidence about a particular thermodynamic situation, where electronic species display their highest susceptibility to exchange electrons to or from surroundings. This situation is denominated as the electronic temperature condition. Neutral chemical species display their lowest possible hardness value at the electronic temperature condition, and remarkably, under this circumstance, the exchange of any amount of electronic charge will necessarily be translated into a net increase in the corresponding chemical hardness. Chemical response functions defined as partial derivatives of the Helmholtz potential with respect to the (average) number of electrons and evaluated at the electronic temperature condition provide comparable results than those obtained from the coarse quadratic approximation to the exact dependence of the electronic energy vs the number of electrons, including composite quantities as the electrophilicity index. In this context, we show that the exact Helmholtz potential dependence with respect to the number of electrons can accurately be approximated by "temperature dependent" polynomial fits (up to fourth order), evaluated at the electronic temperature condition.

8.
J Chem Phys ; 149(12): 124110, 2018 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-30278682

RESUMEN

In this brief report, we show that the three different chemical hardness definitions developed in the framework of the temperature-dependent density functional theory-namely, the electronic, the thermodynamic, and the Helmholtz hardnesses-imply both the hard and soft acids and bases (HSAB) principle and the maximum hardness (MH) principle. These hardnesses are identified as the second derivative of a thermodynamic state function and avoid the somewhat arbitrary approach, based on the parabolic interpolation of the energy versus electron number, that is normally used to justify these principles. This not only leads to a more mathematically sound justification of the HSAB and MH principles in the low-temperature limit but also establishes that the HSAB and the MH principles hold at any temperature of chemical relevance.

9.
J Mol Model ; 24(10): 285, 2018 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-30238252

RESUMEN

A new strategy, recently reported by us to develop local and linear (nonlocal) counterparts of global response functions, is applied to study the local behavior of the global softness and hardness reactivity descriptors. Within this approach a local counterpart is designed to identify the most important molecular fragments for a given chemical response. The local counterpart of the global softness obtained through our methodology corresponds to the well-known definition of local softness and, in agreement with what standard conceptual chemical reactivity in density functional theory dictates, it simply reveals the softest sites in a molecule. For the case of the local hardness, we obtain two expressions that lead to different information regarding the values of the hardness at the different sites within a chemical species. The performance of these two proposal were tested by comparing their corresponding atom-condensed values to experimentally observed reactivity trends for electrophilic attack on benzene and ethene derivatives.

10.
J Mol Model ; 24(9): 245, 2018 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-30128757

RESUMEN

In this work some possibilities for deriving a local electrophilicity are studied. First, we consider the original definition proposed by Chattaraj, Maiti, and Sarkar (J Phys Chem A 107:4973, 2003), in which the local electrophilicity is given by the product of the global electrophilicity, and the Fukui function for charge acceptance is derived by two different approaches, making use of the chain rule for functional derivatives. We also modify the proposals based on the electron density so as to have a definition with the same units of the original definition, which also introduces a dependence in the Fukui function for charge donation. Additionally, we also explore other possibilities using the tools of information theory and the temperature dependent reactivity indices of the density functional theory of chemical reactivity. The poor results obtained from the last two approaches lead us to conjecture that this is due to the fact that the global electrophilicity is not a derivative, like most of the other reactivity indices. The conclusion is that Chattaraj's suggestion seems to be the simplest, but at the same time a very reliable approach to this important property.

11.
Phys Chem Chem Phys ; 20(13): 9011-9014, 2018 03 28.
Artículo en Inglés | MEDLINE | ID: mdl-29503988

RESUMEN

This reply complements the comment of Guégan et al. about our recent work on the revision of the local hardness and the hardness kernel concepts. Guegan et al. analyze our work using a Taylor series expansion of the energy as a functional of the electron density, to show that our procedure opens a new way to define local descriptors. In this contribution we show that the strategy we followed for the local hardness and the hardness kernel is even more general, and that it can be used to derive from a global response function its corresponding local and non-local counterparts by: (1) requiring that the integral over one of the two variables that characterizes the non-local function leads to the local function, and that the integral over the local function leads to the global response index, and (2) assuming that the global and local functions are related through the electronic density, by making use of the chain rule for functional derivatives.


Asunto(s)
Dureza
12.
J Chem Theory Comput ; 14(2): 597-606, 2018 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-29268007

RESUMEN

The temperature-dependence of the Helmholtz free energy with respect to the number of electrons is analyzed within the framework of the Grand Canonical Ensemble. At the zero-temperature limit, the Helmholtz free energy behaves as a Heaviside function of the number of electrons; however, as the temperature increases, the profile smoothens and exhibits a minimum value at noninteger positive values of the fractional electronic charge. We show that the exact average electronic energy as a function of the number of electrons does not display this feature at any temperature, since this behavior is solely due to the electronic entropy. Our mathematical analysis thus indicates that the widely used parabolic interpolation model should not be viewed as an approximation for the average electronic energy, but for the dependence of the Helmholtz free energy upon the number of electrons, and this analysis is corroborated by numerical results. Finally, an electrophilicity index is defined for the Helmholtz free energy showing that, for a given chemical species, there exists a temperature value for which this quantity is equivalent to the electrophilicity index defined within the parabolic interpolation of the electronic energy as a function of the number of electrons. Our formulation suggests that the convexity property of the energy versus the number of electrons together with the entropic contribution does not allow for an analogous nucleophilicity index to be defined.

13.
J Chem Phys ; 147(9): 094105, 2017 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-28886628

RESUMEN

We present how the framework of the temperature-dependent chemical reactivity theory can describe the panorama of different types of interactions between an electronic system and external reagents. The key reactivity indicators are responses of an appropriate state function (like the energy or grand potential) to the variables that determine the state of the system (like the number of electrons/chemical potential, external potential, and temperature). We also consider the response of the average electron density to appropriate perturbations. We present computable formulas for these reactivity indicators and discuss their chemical utility for describing electronic, electrostatic, and thermal changes associated with chemical processes.

14.
J Chem Phys ; 147(7): 074113, 2017 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-28830183

RESUMEN

An alternative definition of hardness (called the thermodynamic hardness) within the grand canonical ensemble formalism is proposed in terms of the partial derivative of the electronic chemical potential with respect to the thermodynamic chemical potential of the reservoir, keeping the temperature and the external potential constant. This temperature dependent definition may be interpreted as a measure of the propensity of a system to go through a charge transfer process when it interacts with other species, and thus it keeps the philosophy of the original definition. When the derivative is expressed in terms of the three-state ensemble model, in the regime of low temperatures and up to temperatures of chemical interest, one finds that for zero fractional charge, the thermodynamic hardness is proportional to T-1(I-A), where I is the first ionization potential, A is the electron affinity, and T is the temperature. However, the thermodynamic hardness is nearly zero when the fractional charge is different from zero. Thus, through the present definition, one avoids the presence of the Dirac delta function. We show that the chemical hardness defined in this way provides meaningful and discernible information about the hardness properties of a chemical species exhibiting integer or a fractional average number of electrons, and this analysis allowed us to establish a link between the maximum possible value of the hardness here defined, with the minimum softness principle, showing that both principles are related to minimum fractional charge and maximum stability conditions.

15.
Phys Chem Chem Phys ; 19(24): 16095-16104, 2017 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-28598466

RESUMEN

We define three new linear response indices with promising applications for bond reactivity using the mathematical framework of τ-CRT (finite temperature chemical reactivity theory). The τ-Fukui kernel is defined as the ratio between the fluctuations of the average electron density at two different points in the space and the fluctuations in the average electron number and is designed to integrate to the finite-temperature definition of the electronic Fukui function. When this kernel is condensed, it can be interpreted as a site-reactivity descriptor of the boundary region between two atoms. The τ-dual kernel corresponds to the first order response of the Fukui kernel and is designed to integrate to the finite temperature definition of the dual descriptor; it indicates the ambiphilic reactivity of a specific bond and enriches the traditional dual descriptor by allowing one to distinguish between the electron-accepting and electron-donating processes. Finally, the τ-hyper dual kernel is defined as the second-order derivative of the Fukui kernel and is proposed as a measure of the strength of ambiphilic bonding interactions. Although these quantities have never been proposed, our results for the τ-Fukui kernel and for τ-dual kernel can be derived in zero-temperature formulation of the chemical reactivity theory with, among other things, the widely-used parabolic interpolation model.

16.
Phys Chem Chem Phys ; 19(21): 13687-13695, 2017 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-28497136

RESUMEN

In this work we establish a new temperature dependent procedure within the grand canonical ensemble, to avoid the Dirac delta function exhibited by some of the second order chemical reactivity descriptors based on density functional theory, at a temperature of 0 K. Through the definition of a local chemical potential designed to integrate to the global temperature dependent electronic chemical potential, the local chemical hardness is expressed in terms of the derivative of this local chemical potential with respect to the average number of electrons. For the three-ground-states ensemble model, this local hardness contains a term that is equal to the one intuitively proposed by Meneses, Tiznado, Contreras and Fuentealba, which integrates to the global hardness given by the difference in the first ionization potential, I, and the electron affinity, A, at any temperature. However, in the present approach one finds an additional temperature-dependent term that introduces changes at the local level and integrates to zero. Additionally, a τ-hard dual descriptor and a τ-soft dual descriptor given in terms of the product of the global hardness and the global softness multiplied by the dual descriptor, respectively, are derived. Since all these reactivity indices are given by expressions composed of terms that correspond to products of the global properties multiplied by the electrophilic or nucleophilic Fukui functions, they may be useful for studying and comparing equivalent sites in different chemical environments.

17.
Phys Chem Chem Phys ; 19(18): 11588-11602, 2017 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-28429010

RESUMEN

Making use of the grand canonical ensemble the derivation of the analytical equations for the chemical potential and the Fukui function in the general case of any number of ground and excited states is presented. The expressions thus obtained allow one to establish that the ensemble of three consecutive ground states that has been usually used to analyze the effects of temperature in these quantities provides a satisfactory description for them at temperatures of chemical interest. Nevertheless, some situations must be considered cautiously, as for example, when the N + k and N + k + 1 (N is the electron number) ground states are (nearly) quasidegenerate or when the first excited state of both the anion and the cation (with respect to the reference state) is very low in energy. Results for the copper atom (with the ground state of Cu+ as the reference state), using some selected ensemble models constituted by several ground and excited states, are presented to show that the very low-lying excited states of some of the copper species are able to contribute to chemical reactivity at relatively low temperatures (∼2000 K). A relevant aspect is that due to its generality, the present approach provides a new way to study the reactivity of the chemical species under extreme conditions.

18.
Phys Chem Chem Phys ; 19(19): 12355-12364, 2017 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-28453014

RESUMEN

An analysis of the hardness kernel and local hardness is performed to propose new definitions for these quantities that follow a similar pattern to the one that characterizes the quantities associated with softness, that is, we have derived new definitions for which the integral of the hardness kernel over the whole space of one of the variables leads to local hardness, and the integral of local hardness over the whole space leads to global hardness. A basic aspect of the present approach is that global hardness keeps its identity as the second derivative of energy with respect to the number of electrons. Local hardness thus obtained depends on the first and second derivatives of energy and electron density with respect to the number of electrons. When these derivatives are approximated by a smooth quadratic interpolation of energy, the expression for local hardness reduces to the one intuitively proposed by Meneses, Tiznado, Contreras and Fuentealba. However, when one combines the first directional derivatives with smooth second derivatives one finds additional terms that allow one to differentiate local hardness for electrophilic attack from the one for nucleophilic attack. Numerical results related to electrophilic attacks on substituted pyridines, substituted benzenes and substituted ethenes are presented to show the overall performance of the new definition.

19.
J Chem Phys ; 143(15): 154103, 2015 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-26493893

RESUMEN

We extend the definition of the electronic chemical potential (µe) and chemical hardness (ηe) to finite temperatures by considering a reactive chemical species as a true open system to the exchange of electrons, working exclusively within the framework of the grand canonical ensemble. As in the zero temperature derivation of these descriptors, the response of a chemical reagent to electron-transfer is determined by the response of the (average) electronic energy of the system, and not by intrinsic thermodynamic properties like the chemical potential of the electron-reservoir which is, in general, different from the electronic chemical potential, µe. Although the dependence of the electronic energy on electron number qualitatively resembles the piecewise-continuous straight-line profile for low electronic temperatures (up to ca. 5000 K), the introduction of the temperature as a free variable smoothens this profile, so that derivatives (of all orders) of the average electronic energy with respect to the average electron number exist and can be evaluated analytically. Assuming a three-state ensemble, well-known results for the electronic chemical potential at negative (-I), positive (-A), and zero values of the fractional charge (-(I + A)/2) are recovered. Similarly, in the zero temperature limit, the chemical hardness is formally expressed as a Dirac delta function in the particle number and satisfies the well-known reciprocity relation with the global softness.

20.
J Chem Phys ; 143(2): 024112, 2015 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-26178095

RESUMEN

Assuming that the electronic energy is given by a smooth function of the number of electrons and within the extension of density functional theory to finite temperature, the first and second order chemical reactivity response functions of the Helmholtz free energy with respect to the temperature, the number of electrons, and the external potential are derived. It is found that in all cases related to the first or second derivatives with respect to the number of electrons or the external potential, there is a term given by the average of the corresponding derivative of the electronic energy of each state (ground and excited). For the second derivatives, including those related with the temperature, there is a thermal fluctuation contribution that is zero at zero temperature. Thus, all expressions reduce correctly to their corresponding chemical reactivity expressions at zero temperature and show that, at room temperature, the corrections are very small. When the assumption that the electronic energy is given by a smooth function of the number of electrons is replaced by the straight lines behavior connecting integer values, as required by the ensemble theorem, one needs to introduce directional derivatives in most cases, so that the temperature dependent expressions reduce correctly to their zero temperature counterparts. However, the main result holds, namely, at finite temperature the thermal corrections to the chemical reactivity response functions are very small. Consequently, the present work validates the usage of reactivity indexes calculated at zero temperature to infer chemical behavior at room and even higher temperatures.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...