Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Adv ; 7(29)2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34261650

RESUMEN

Neutrophils migrating through extravascular spaces must negotiate narrow matrix pores without losing directional movement. We investigated how chemotaxing neutrophils probe matrices and adjust their migration to collagen concentration ([col]) changes by tracking 20,000 cell trajectories and quantifying cell-generated 3D matrix deformations. In low-[col] matrices, neutrophils exerted large deformations and followed straight trajectories. As [col] increased, matrix deformations decreased, and neutrophils turned often to circumvent rather than remodel matrix pores. Inhibiting protrusive or contractile forces shifted this transition to lower [col], implying that mechanics play a crucial role in defining migratory strategies. To balance frequent turning and directional bias, neutrophils used matrix obstacles as pivoting points to steer toward the chemoattractant. The Actin Related Protein 2/3 complex coordinated successive turns, thus controlling deviations from chemotactic paths. These results offer an improved understanding of the mechanisms and molecular regulators used by neutrophils during chemotaxis in restrictive 3D environments.

2.
Proc Natl Acad Sci U S A ; 115(1): 133-138, 2018 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-29255056

RESUMEN

Leukocyte transmigration across vessel walls is a critical step in the innate immune response. Upon their activation and firm adhesion to vascular endothelial cells (VECs), leukocytes preferentially extravasate across junctional gaps in the endothelial monolayer (paracellular diapedesis). It has been hypothesized that VECs facilitate paracellular diapedesis by opening their cell-cell junctions in response to the presence of an adhering leukocyte. However, it is unclear how leukocytes interact mechanically with VECs to open the VEC junctions and migrate across the endothelium. In this study, we measured the spatial and temporal evolution of the 3D traction stresses generated by the leukocytes and VECs to elucidate the sequence of mechanical events involved in paracellular diapedesis. Our measurements suggest that the contractile stresses exerted by the leukocytes and the VECs can separately perturb the junctional tensions of VECs to result in the opening of gaps before the initiation of leukocyte transmigration. Decoupling the stresses exerted by the transmigrating leukocytes and the VECs reveals that the leukocytes actively contract the VECs to open a junctional gap and then push themselves across the gap by generating strong stresses that push into the matrix. In addition, we found that diapedesis is facilitated when the tension fluctuations in the VEC monolayer were increased by proinflammatory thrombin treatment. Our findings demonstrate that diapedesis can be mechanically regulated by the transmigrating leukocytes and by proinflammatory signals that increase VEC contractility.


Asunto(s)
Células Endoteliales de la Vena Umbilical Humana/metabolismo , Uniones Intercelulares/metabolismo , Leucocitos/metabolismo , Modelos Biológicos , Migración Transendotelial y Transepitelial/fisiología , Células HL-60 , Células Endoteliales de la Vena Umbilical Humana/citología , Humanos , Leucocitos/citología
3.
J Cell Biol ; 204(6): 1045-61, 2014 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-24637328

RESUMEN

Chemotaxing Dictyostelium discoideum cells adapt their morphology and migration speed in response to intrinsic and extrinsic cues. Using Fourier traction force microscopy, we measured the spatiotemporal evolution of shape and traction stresses and constructed traction tension kymographs to analyze cell motility as a function of the dynamics of the cell's mechanically active traction adhesions. We show that wild-type cells migrate in a step-wise fashion, mainly forming stationary traction adhesions along their anterior-posterior axes and exerting strong contractile axial forces. We demonstrate that lateral forces are also important for motility, especially for migration on highly adhesive substrates. Analysis of two mutant strains lacking distinct actin cross-linkers (mhcA(-) and abp120(-) cells) on normal and highly adhesive substrates supports a key role for lateral contractions in amoeboid cell motility, whereas the differences in their traction adhesion dynamics suggest that these two strains use distinct mechanisms to achieve migration. Finally, we provide evidence that the above patterns of migration may be conserved in mammalian amoeboid cells.


Asunto(s)
Dictyostelium/fisiología , Fenómenos Biomecánicos , Adhesión Celular , Forma de la Célula , Quimiotaxis , Dictyostelium/citología , Células HL-60 , Humanos , Cinética , Microscopía Fluorescente , Modelos Biológicos , Imagen de Lapso de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...