Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 15(1): 6067, 2024 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-39025856

RESUMEN

After recognizing its ligand lipopolysaccharide, Toll-like receptor 4 (TLR4) recruits adaptor proteins to the cell membrane, thereby initiating downstream signaling and triggering inflammation. Whether this recruitment of adaptor proteins is dependent solely on protein-protein interactions is unknown. Here, we report that the sphingolipid sphinganine physically interacts with the adaptor proteins MyD88 and TIRAP and promotes MyD88 recruitment in macrophages. Myeloid cell-specific deficiency in serine palmitoyltransferase long chain base subunit 2, which encodes the key enzyme catalyzing sphingolipid biosynthesis, decreases the membrane recruitment of MyD88 and inhibits inflammatory responses in in vitro bone marrow-derived macrophage and in vivo sepsis models. In a melanoma mouse model, serine palmitoyltransferase long chain base subunit 2 deficiency decreases anti-tumor myeloid cell responses and increases tumor growth. Therefore, sphinganine biosynthesis is required for the initiation of TLR4 signal transduction and serves as a checkpoint for macrophage pattern recognition in sepsis and melanoma mouse models.


Asunto(s)
Macrófagos , Melanoma , Factor 88 de Diferenciación Mieloide , Sepsis , Serina C-Palmitoiltransferasa , Esfingosina , Receptor Toll-Like 4 , Animales , Receptor Toll-Like 4/metabolismo , Sepsis/metabolismo , Macrófagos/metabolismo , Factor 88 de Diferenciación Mieloide/metabolismo , Ratones , Esfingosina/análogos & derivados , Esfingosina/metabolismo , Melanoma/metabolismo , Melanoma/patología , Melanoma/genética , Serina C-Palmitoiltransferasa/metabolismo , Serina C-Palmitoiltransferasa/genética , Humanos , Transducción de Señal , Modelos Animales de Enfermedad , Inflamación/metabolismo , Receptores de Interleucina-1/metabolismo , Receptores de Interleucina-1/genética , Glicoproteínas de Membrana/metabolismo , Glicoproteínas de Membrana/genética , Ratones Endogámicos C57BL , Ratones Noqueados , Células HEK293 , Lipopolisacáridos
2.
Cell Stem Cell ; 30(2): 207-218.e7, 2023 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-36652946

RESUMEN

In response to infections and stress, hematopoiesis rapidly enhances blood and immune cell production. The stage within the hematopoietic hierarchy that accounts for this regeneration is unclear under natural conditions in vivo. We analyzed by differentiation tracing, using inducible Tie2- or Flt3-driven Cre recombinase, the roles of mouse hematopoietic stem cells (HSCs) and multipotent progenitors (MPPs). During polymicrobial sepsis, HSCs responded transcriptionally and increased their proliferation and cell death, yet HSC differentiation rates remained at steady-state levels. HSC differentiation was also independent from the ablation of various cellular compartments-bleeding, the antibody-mediated ablation of granulocytes or B lymphocytes, and genetic lymphocyte deficiency. By marked contrast, the fate mapping of MPPs in polymicrobial sepsis identified these cells as a major source for accelerated myeloid cell production. The regulation of blood and immune cell homeostasis by progenitors rather than stem cells may ensure a rapid response while preserving the integrity of the HSC population.


Asunto(s)
Células Madre Hematopoyéticas , Sepsis , Animales , Ratones , Diferenciación Celular/genética , Linaje de la Célula , Hematopoyesis/fisiología , Células Madre Hematopoyéticas/metabolismo , Integrasas/metabolismo , Células Madre Multipotentes , Sepsis/metabolismo , Tirosina Quinasa 3 Similar a fms/metabolismo , Receptor TIE-2/metabolismo
3.
Lipids Health Dis ; 21(1): 91, 2022 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-36153592

RESUMEN

BACKGROUND: Essential phospholipids (EPL) have hepatoprotective effects across many liver diseases/conditions. The impact of EPL on hepatocyte function in vitro was investigated. METHODS: Effects of noncytotoxic concentrations of EPL (0.1 and 0.25 mg/ml), and its constituents, polyenylphosphatidylcholine (PPC) and phosphatidylinositol (PI) (both at 0.1 and 1 mg/ml), on membrane fluidity, apoptosis and extracellular transport versus controls were investigated in human hepatocyte cell lines (HepG2, HepaRG, steatotic HepaRG).  RESULTS: Significantly increased membrane fluidity occurred with all 3 phospholipids (PLs) in HepG2 cultures, and with PI (1 mg/ml) in steatotic HepaRG cells. Significantly decreased tamoxifen-induced apoptosis was observed in HepG2 cells with EPL, PPC and PI. Breast cancer resistance protein (BCRP) activity was significantly increased by EPL and PI in HepG2 cells. Multidrug resistance-associated protein 2 (MRP-2) activity was unaffected by any PL in HepG2 cells, and significantly increased by EPL, PI and PPC (1 mg/ml) in HepaRG cells, and by PI (1 mg/ml) in steatotic HepaRG cells. Bile salt export protein (BSEP) activity in HepG2 cells and steatotic HepaRG cells was significantly increased by EPL (0.25 mg/ml), and PPC (both concentrations), but not by PI. The PLs had no effects on HepaRG cell BSEP activity. P-glycoprotein (P-GP) activity was significantly increased by all compounds in HepG2 cells. PI (1 mg/ml) significantly increased P-GP activity in HepaRG and steatotic HepaRG cells. CONCLUSIONS: EPL, PPC, and PI increased hepatocyte membrane fluidity, decreased apoptosis and increased hepatocellular export, all of which may improve liver function. These in-vitro investigations provide valuable insights into the mechanism of action of EPL.


Asunto(s)
Hígado Graso , Proteínas de Neoplasias , Subfamilia B de Transportador de Casetes de Unión a ATP/metabolismo , Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 2/metabolismo , Apoptosis , Ácidos y Sales Biliares/metabolismo , Línea Celular , Hígado Graso/metabolismo , Hepatocitos/metabolismo , Humanos , Proteínas de Neoplasias/metabolismo , Fosfatidilinositoles/metabolismo , Tamoxifeno/efectos adversos , Tamoxifeno/metabolismo
4.
Nat Commun ; 13(1): 3135, 2022 06 06.
Artículo en Inglés | MEDLINE | ID: mdl-35668108

RESUMEN

Patient-derived organoids resemble the biology of tissues and tumors, enabling ex vivo modeling of human diseases. They have heterogeneous morphologies with unclear biological causes and relationship to treatment response. Here, we use high-throughput, image-based profiling to quantify phenotypes of over 5 million individual colorectal cancer organoids after treatment with >500 small molecules. Integration of data using multi-omics modeling identifies axes of morphological variation across organoids: Organoid size is linked to IGF1 receptor signaling, and cystic vs. solid organoid architecture is associated with LGR5 + stemness. Treatment-induced organoid morphology reflects organoid viability, drug mechanism of action, and is biologically interpretable. Inhibition of MEK leads to cystic reorganization of organoids and increases expression of LGR5, while inhibition of mTOR induces IGF1 receptor signaling. In conclusion, we identify shared axes of variation for colorectal cancer organoid morphology, their underlying biological mechanisms, and pharmacological interventions with the ability to move organoids along them.


Asunto(s)
Neoplasias Colorrectales , Organoides , Neoplasias Colorrectales/genética , Humanos , Organoides/patología , Fenotipo , Transducción de Señal
6.
ACS Nano ; 13(8): 8749-8759, 2019 08 27.
Artículo en Inglés | MEDLINE | ID: mdl-31322856

RESUMEN

The surface of proteins is heterogeneous with sophisticated but precise hydrophobic and hydrophilic patches, which is essential for their diverse biological functions. To emulate such distinct surface patterns on macromolecules, we used rigid spherical synthetic dendrimers (polyphenylene dendrimers) to provide controlled amphiphilic surface patches with molecular precision. We identified an optimal spatial arrangement of these patches on certain dendrimers that enabled their interaction with human adenovirus 5 (Ad5). Patchy dendrimers bound to the surface of Ad5 formed a synthetic polymer corona that greatly altered various host interactions of Ad5 as well as in vivo distribution. The dendrimer corona (1) improved the ability of Ad5-derived gene transfer vectors to transduce cells deficient for the primary Ad5 cell membrane receptor and (2) modulated the binding of Ad5 to blood coagulation factor X, one of the most critical virus-host interactions in the bloodstream. It significantly enhanced the transduction efficiency of Ad5 while also protecting it from neutralization by natural antibodies and the complement system in human whole blood. Ad5 with a synthetic dendrimer corona revealed profoundly altered in vivo distribution, improved transduction of heart, and dampened vector sequestration by liver and spleen. We propose the design of bioactive polymers that bind protein surfaces solely based on their amphiphilic surface patches and protect against a naturally occurring protein corona, which is highly attractive to improve Ad5-based in vivo gene therapy applications.


Asunto(s)
Adenovirus Humanos/genética , Dendrímeros/farmacología , Interacciones Huésped-Patógeno/efectos de los fármacos , Transducción Genética , Adenovirus Humanos/efectos de los fármacos , Animales , Proteínas de la Cápside/química , Dendrímeros/química , Vectores Genéticos/química , Vectores Genéticos/efectos de los fármacos , Humanos , Interacciones Hidrofóbicas e Hidrofílicas/efectos de los fármacos , Hígado/química , Hígado/efectos de los fármacos , Polímeros/química , Polímeros/farmacología , Receptores Virales/antagonistas & inhibidores , Receptores Virales/química
7.
Clin Immunol ; 174: 73-83, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27847316

RESUMEN

Allergic diseases have emerged as a major health care burden, especially in the western hemisphere. They are defined by overshooting reactions of an aberrant immune system to harmless exogenous stimuli. The TH1/TH2 paradigm assumes that a dominance of TH2 cell activation and an inadequate TH1 cell response are responsible for the development of allergies. However, the characterization of additional T helper cell subpopulations such as TH9, TH17, TH22, THGM-CSF and their interplay with regulatory T cells suggest further layers of complexity. This review summarizes state-of-the-art knowledge on T cell diversity and their induction, while revisiting the TH1/TH2 paradigm. With respect to these numerous contributors, it offers a new perspective on the pathogenesis of asthma, allergic rhinitis (AR) and atopic dermatitis (AD) incorporating recent discoveries in the field of T cell plasticity.


Asunto(s)
Hipersensibilidad/inmunología , Subgrupos de Linfocitos T/inmunología , Animales , Factor Estimulante de Colonias de Granulocitos y Macrófagos/inmunología , Humanos , Interleucina-9/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA