Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Chem Phys ; 160(22)2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38874101

RESUMEN

We calculate thermodynamic and structural quantities of a fluid of hard spheres of diameter σ in a quasi-one-dimensional pore with accessible pore width W smaller than σ by applying a perturbative method worked out earlier for a confined fluid in a slit pore [Franosch et al. Phys. Rev. Lett. 109, 240601 (2012)]. In a first step, we prove that the thermodynamic and a certain class of structural quantities of the hard-sphere fluid in the pore can be obtained from a purely one-dimensional fluid of rods of length σ with a central hard core of size σW=σ2-W2 and a soft part at both ends of length (σ - σW)/2. These rods interact via effective k-body potentials veff(k) (k ≥ 2). The two- and the three-body potential will be calculated explicitly. In a second step, the free energy of this effective one-dimensional fluid is calculated up to leading order in (W/σ)2. Explicit results for, e.g., the perpendicular pressure, surface tension, and the density profile as a function of density, temperature, and pore width are presented and partly compared with results from Monte-Carlo simulations and standard virial expansions. Despite the perturbative character of our approach, it encompasses the singularity of the thermodynamic quantities at the jamming transition point.

2.
Phys Rev E ; 109(1-2): 015303, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38366417

RESUMEN

We investigate the usage of a recently introduced noise-cancellation algorithm for Brownian simulations to enhance the precision of measuring transport properties such as the mean-square displacement or the velocity-autocorrelation function. The algorithm is based on explicitly storing the pseudorandom numbers used to create the randomized displacements in computer simulations and subtracting them from the simulated trajectories. The resulting correlation function of the reduced motion is connected to the target correlation function up to a cross-correlation term. Using analytical theory and computer simulations, we demonstrate that the cross-correlation term can be neglected in all three systems studied in this paper. We further expand the algorithm to Monte Carlo simulations and analyze the performance of the algorithm and rationalize that it works particularly well for unbounded, weakly interacting systems in which the precision of the mean-square displacement can be improved by orders of magnitude.

3.
Soft Matter ; 20(9): 2008-2016, 2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38328899

RESUMEN

Finding the best strategy to minimize the time needed to find a given target is a crucial task both in nature and in reaching decisive technological advances. By considering learning agents able to switch their dynamics between standard and active Brownian motion, here we focus on developing effective target-search behavioral policies for microswimmers navigating a homogeneous environment and searching for targets of unknown position. We exploit projective simulation, a reinforcement learning algorithm, to acquire an efficient stochastic policy represented by the probability of switching the phase, i.e. the navigation mode, in response to the type and the duration of the current phase. Our findings reveal that the target-search efficiency increases with the particle's self-propulsion during the active phase and that, while the optimal duration of the passive case decreases monotonically with the activity, the optimal duration of the active phase displays a non-monotonic behavior.

4.
Phys Rev Lett ; 132(3): 038302, 2024 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-38307047

RESUMEN

We characterize the full spatiotemporal gait of populations of swimming Escherichia coli using renewal processes to analyze the measurements of intermediate scattering functions. This allows us to demonstrate quantitatively how the persistence length of an engineered strain can be controlled by a chemical inducer and to report a controlled transition from perpetual tumbling to smooth swimming. For wild-type E. coli, we measure simultaneously the microscopic motility parameters and the large-scale effective diffusivity, hence quantitatively bridging for the first time small-scale directed swimming and macroscopic diffusion.


Asunto(s)
Quimiotaxis , Escherichia coli , Natación , Difusión , Marcha
5.
Phys Rev E ; 109(1-1): 014612, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38366485

RESUMEN

We introduce a numerical method to extract the parameters of run-and-tumble dynamics from experimental measurements of the intermediate scattering function. We show that proceeding in Laplace space is unpractical and employ instead renewal processes to work directly in real time. We first validate our approach against data produced using agent-based simulations. This allows us to identify the length and time scales required for an accurate measurement of the motility parameters, including tumbling frequency and swim speed. We compare different models for the run-and-tumble dynamics by accounting for speed variability at the single-cell and population level, respectively. Finally, we apply our approach to experimental data on wild-type Escherichia coli obtained using differential dynamic microscopy.


Asunto(s)
Bacterias , Microscopía , Microscopía/métodos , Natación , Escherichia coli , Modelos Biológicos
6.
Phys Rev E ; 107(6-1): 064123, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37464643

RESUMEN

We solve the time-dependent Fokker-Planck equation for a two-dimensional active Brownian particle exploring a circular region with an absorbing boundary. Using the passive Brownian particle as basis states and dealing with the activity as a perturbation, we provide a matrix representation of the Fokker-Planck operator and we express the propagator in terms of the perturbed eigenvalues and eigenfunctions. Alternatively, we show that the propagator can be expressed as a combination of the equilibrium eigenstates with weights depending only on time and on the initial conditions, and obeying exact iterative relations. Our solution allows also obtaining the survival probability and the first-passage time distribution. These latter quantities exhibit peculiarities induced by the nonequilibrium character of the dynamics; in particular, they display a strong dependence on the activity of the particle and, to a less extent, also on its rotational diffusivity.

7.
Phys Rev E ; 107(5-1): 054101, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37328986

RESUMEN

We present mode-coupling theory (MCT) results for densely packed hard-sphere fluids confined between two parallel walls and compare them quantitatively to computer simulations. The numerical solution of MCT is calculated using the full system of matrix-valued integro-differential equations. We investigate several dynamical properties of supercooled liquids including scattering functions, frequency-dependent susceptibilities, and mean-square displacements. Close to the glass transition, we find quantitative agreement between the coherent scattering function predicted from theory and that evaluated from simulations, which enables us to make quantitative statements on caging and relaxation dynamics of the confined hard-sphere fluid.


Asunto(s)
Vidrio , Simulación por Computador
8.
Phys Rev E ; 107(4-1): 044602, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37198806

RESUMEN

We calculate the thermophoretic drift of a charged single colloidal particle with hydrodynamically slipping surface immersed in an electrolyte solution in response to a small temperature gradient. Here we rely on a linearized hydrodynamic approach for the fluid flow and the motion of the electrolyte ions while keeping the full nonlinearity of the Poisson-Boltzmann equation of the unperturbed system to account for possible large surface charging. The partial differential equations are transformed into a coupled set of ordinary differential equations in linear response. Numerical solutions are elaborated for parameter regimes of small and large Debye shielding and different hydrodynamic boundary conditions encoded in a varying slip length. Our results are in good agreement with predictions from recent theoretical work and successfully describe experimental observations on thermophoresis of DNA. We also compare our numerical results with experimental data on polystyrene beads.

9.
Phys Rev Lett ; 130(16): 168202, 2023 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-37154655

RESUMEN

We measure the thermophoresis of polysterene beads over a wide range of temperature gradients and find a pronounced nonlinear phoretic characteristic. The transition to the nonlinear behavior is marked by a drastic slowing down of thermophoretic motion and is characterized by a Péclet number of order unity as corroborated for different particle sizes and salt concentrations. The data follow a single master curve covering the entire nonlinear regime for all system parameters upon proper rescaling of the temperature gradients with the Péclet number. For low thermal gradients, the thermal drift velocity follows a theoretical linear model relying on the local-equilibrium assumption, while linear theoretical approaches based on hydrodynamic stresses, ignoring fluctuations, predict significantly slower thermophoretic motion for steeper thermal gradients. Our findings suggest that thermophoresis is fluctuation dominated for small gradients and crosses over to a drift-dominated regime for larger Péclet numbers in striking contrast to electrophoresis.

10.
Sci Rep ; 13(1): 5616, 2023 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-37024516

RESUMEN

Artificial cells can be engineered to display dynamics sharing remarkable features in common with the survival behavior of living organisms. In particular, such active systems can respond to stimuli provided by the environment and undertake specific displacements to remain out of equilibrium, e.g. by moving towards regions with higher fuel concentration. In spite of the intense experimental activity aiming at investigating this fascinating behavior, a rigorous definition and characterization of such "survival strategies" from a statistical physics perspective is still missing. In this work, we take a first step in this direction by adapting and applying to active systems the theoretical framework of Transition Path Theory, which was originally introduced to investigate rare thermally activated transitions in passive systems. We perform experiments on camphor disks navigating Petri dishes and perform simulations in the paradigmatic active Brownian particle model to show how the notions of transition probability density and committor function provide the pivotal concepts to identify survival strategies, improve modeling, and obtain and validate experimentally testable predictions. The definition of survival in these artificial systems paves the way to move beyond simple observation and to formally characterize, design and predict complex life-like behaviors.

11.
Phys Rev Lett ; 129(22): 228003, 2022 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-36493425

RESUMEN

We investigate the dynamics of a single chiral active particle subject to an external torque due to the presence of a gravitational field. Our computer simulations reveal an arbitrarily strong increase of the long-time diffusivity of the gravitactic agent when the external torque approaches the intrinsic angular drift. We provide analytic expressions for the mean-square displacement in terms of eigenfunctions and eigenvalues of the noisy-driven-pendulum problem. The pronounced maximum in the diffusivity is then rationalized by the vanishing of the lowest eigenvalues of the Fokker-Planck equation for the angular motion as the rotational diffusion decreases and the underlying classical bifurcation is approached. A simple harmonic-oscillator picture for the barrier-dominated motion provides a quantitative description for the onset of the resonance while its range of validity is determined by the crossover to a critical-fluctuation-dominated regime.


Asunto(s)
Difusión , Simulación por Computador , Movimiento (Física)
12.
Phys Rev Lett ; 129(15): 158001, 2022 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-36269953

RESUMEN

We provide an analytical solution for the time-dependent Fokker-Planck equation for a two-dimensional active Brownian particle trapped in an isotropic harmonic potential. Using the passive Brownian particle as basis states we show that the Fokker-Planck operator becomes lower diagonal, implying that the eigenvalues are unaffected by the activity. The propagator is then expressed as a combination of the equilibrium eigenstates with weights obeying exact iterative relations. We show that for the low-order correlation functions, such as the positional autocorrelation function, the recursion terminates at finite order in the Péclet number, allowing us to generate exact compact expressions and derive the velocity autocorrelation function and the time-dependent diffusion coefficient. The nonmonotonic behavior of latter quantities serves as a fingerprint of the nonequilibrium dynamics.

13.
Phys Rev E ; 106(1-1): 014614, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35974617

RESUMEN

We simulate a hard-sphere liquid in confined geometry where the separation of the two parallel, hard walls is smaller than two particle diameters. By systematically reducing the wall separation we analyze the behavior of structural and thermodynamic properties, such as inhomogeneous density profiles, structure factors, and compressibilities when approaching the two-dimensional limit. In agreement with asymptotic predictions, we find for quasi-two-dimensional fluids that the density profile becomes parabolic and the structure factor converges toward its two-dimensional counterpart. To extract the compressibility in polydisperse samples a perturbative expression is used which qualitatively influences the observed nonmonotonic dependence of the compressibility with wall separation. We also present theoretical calculations based on fundamental-measure theory and integral-equation theory, which are in very good agreement with the simulation results.

14.
Phys Rev Lett ; 128(20): 209902, 2022 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-35657904

RESUMEN

This corrects the article DOI: 10.1103/PhysRevLett.109.240601.

15.
Soft Matter ; 18(25): 4699-4714, 2022 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-35702953

RESUMEN

Confinement modifies the properties of a fluid. The particle density is no longer uniform but depends on the distance from the walls; parallel to the walls, layers with different particle densities form. This affects the particle packing in the layers. We investigated colloidal fluids with volume fractions between 0.19 and 0.32 confined between rough walls. The particle-particle interactions were dominated by hard-sphere interactions but also contained some electrostatic interactions. The particle locations were determined using confocal microscopy and served to calculate the density profile, radial distribution function, anisotropic and generalized structure factors but also to characterize the arrangement of the wall particles leading to the roughness of the walls. The experiments are complemented by molecular dynamics simulations and fundamental-measure theory. While the particle arrangements are mainly controlled by hard-core interactions, electrostatic interactions become more important as the volume fraction decreases. Furthermore, the structure of the rough walls was varied and found to have a significant effect on the fluid structure. An appropriate representation of the rough walls in the simulations is thus crucial to successfully mimic the experiments.

16.
J Chem Phys ; 155(8): 084901, 2021 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-34470340

RESUMEN

We investigate exploration patterns of a microswimmer, modeled as an active Brownian particle, searching for a target region located in a well of an energy landscape and separated from the initial position of the particle by high barriers. We find that the microswimmer can enhance its success rate in finding the target by tuning its activity and its persistence in response to features of the environment. The target-search patterns of active Brownian particles are counterintuitive and display characteristics robust to changes in the energy landscape. On the contrary, the transition rates and transition-path times are sensitive to the details of the specific energy landscape. In striking contrast to the passive case, the presence of additional local minima does not significantly slow down the active-target-search dynamics.

17.
Phys Rev E ; 104(1-1): 014605, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34412330

RESUMEN

We study the two-dimensional motion of colloidal dimers by single-particle tracking and compare the experimental observations obtained by bright-field microscopy to theoretical predictions for anisotropic diffusion. The comparison is based on the mean-square displacements in the laboratory and particle frame as well as generalizations of the self-intermediate scattering functions, which provide insights into the rotational dynamics of the dimer. The diffusional anisotropy leads to a measurable translational-rotational coupling that becomes most prominent by aligning the coordinate system with the initial orientation of the particles. In particular, we find a splitting of the time-dependent diffusion coefficients parallel and perpendicular to the long axis of the dimer which decays over the orientational relaxation time. Deviations of the self-intermediate scattering functions from pure exponential relaxation are small but can be resolved experimentally. The theoretical predictions and experimental results agree quantitatively.

18.
Phys Rev Lett ; 126(1): 018001, 2021 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-33480788

RESUMEN

Target search by active agents in rugged energy landscapes has remained a challenge because standard enhanced sampling methods do not apply to irreversible dynamics. We overcome this nonequilibrium rare-event problem by developing an algorithm generalizing transition-path sampling to active Brownian dynamics. This method is exemplified and benchmarked for a paradigmatic two-dimensional potential with a high barrier. We find that even in such a simple landscape the structure and kinetics of the ensemble of transition paths changes drastically in the presence of activity. Indeed, active Brownian particles reach the target more frequently than passive Brownian particles, following longer and counterintuitive search patterns.

19.
Phys Rev Lett ; 125(13): 138002, 2020 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-33034497

RESUMEN

We study a strongly interacting crowded system of self-propelled stiff filaments by event-driven Brownian dynamics simulations and an analytical theory to elucidate the intricate interplay of crowding and self-propulsion. We find a remarkable increase of the effective diffusivity upon increasing the filament number density by more than one order of magnitude. This counterintuitive "crowded is faster" behavior can be rationalized by extending the concept of a confining tube pioneered by Doi and Edwards for highly entangled, crowded, passive to active systems. We predict a scaling theory for the effective diffusivity as a function of the Péclet number and the filament number density. Subsequently, we show that an exact expression derived for a single self-propelled filament with motility parameters as input can predict the nontrivial spatiotemporal dynamics over the entire range of length and timescales. In particular, our theory captures short-time diffusion, directed swimming motion at intermediate times, and the transition to complete orientational relaxation at long times.

20.
Phys Rev E ; 102(3-1): 032611, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-33075887

RESUMEN

We present numerical results for the tagged-particle dynamics by solving the mode-coupling theory in confined geometry for colloidal liquids (cMCT). We show that neither the microscopic dynamics nor the type of intermediate scattering function qualitatively changes the asymptotic dynamics in vicinity of the glass transition. In particular, we find similar characteristics of confinement in the low-frequency susceptibility spectrum which we interpret as footprints of parallel relaxation. We derive predictions for the localization length and the scaling of the diffusion coefficient in the supercooled regime and discover a pronounced nonmonotonic dependence on the confinement length. For dilute liquids in the hydrodynamic limit we calculate an analytical expression for the intermediate scattering functions, which is in perfect agreement with event-driven Brownian dynamics simulations. From this, we derive an expression for persistent anticorrelations in the velocity autocorrelation function (VACF) for confined motion. Using numerical results of the cMCT equations for the VACF we also identify a crossover between different scalings corresponding to a transition from unconfined to confined behavior.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...