Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 72
Filtrar
1.
PLoS Biol ; 22(3): e3002567, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38470934

RESUMEN

PEX5, the peroxisomal protein shuttling receptor, binds newly synthesized proteins in the cytosol and transports them to the organelle. During its stay at the peroxisomal protein translocon, PEX5 is monoubiquitinated at its cysteine 11 residue, a mandatory modification for its subsequent ATP-dependent extraction back into the cytosol. The reason why a cysteine and not a lysine residue is the ubiquitin acceptor is unknown. Using an established rat liver-based cell-free in vitro system, we found that, in contrast to wild-type PEX5, a PEX5 protein possessing a lysine at position 11 is polyubiquitinated at the peroxisomal membrane, a modification that negatively interferes with the extraction process. Wild-type PEX5 cannot retain a polyubiquitin chain because ubiquitination at cysteine 11 is a reversible reaction, with the E2-mediated deubiquitination step presenting faster kinetics than PEX5 polyubiquitination. We propose that the reversible nonconventional ubiquitination of PEX5 ensures that neither the peroxisomal protein translocon becomes obstructed with polyubiquitinated PEX5 nor is PEX5 targeted for proteasomal degradation.


Asunto(s)
Cisteína , Lisina , Animales , Ratas , Proteínas Portadoras/metabolismo , Cisteína/metabolismo , Lisina/metabolismo , Receptor de la Señal 1 de Direccionamiento al Peroxisoma/química , Receptor de la Señal 1 de Direccionamiento al Peroxisoma/metabolismo , Transporte de Proteínas , Ubiquitinación
2.
Curr Opin Chem Biol ; 78: 102426, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38237354

RESUMEN

Hydrogen peroxide (H2O2), a natural metabolite commonly found in aerobic organisms, plays a crucial role in numerous cellular signaling processes. One of the key organelles involved in the cell's metabolism of H2O2 is the peroxisome. In this review, we first provide a concise overview of the current understanding of H2O2 as a molecular messenger in thiol redox signaling, along with the role of peroxisomes as guardians and modulators of cellular H2O2 balance. Next, we direct our focus toward the recently identified primary protein targets of H2O2 originating from peroxisomes, emphasizing their importance in unraveling the complex interplay between peroxisomal H2O2 and cell signaling. We specifically focus on three areas: signaling through peroxiredoxin redox relay complexes, calcium signaling, and phospho-signaling. Finally, we highlight key research directions that warrant further investigation to enhance our comprehension of the molecular and biochemical mechanisms linking alterations in peroxisomal H2O2 metabolism with disease.


Asunto(s)
Peróxido de Hidrógeno , Peroxisomas , Peróxido de Hidrógeno/metabolismo , Oxidación-Reducción , Peroxisomas/metabolismo , Transducción de Señal , Comunicación Celular
3.
Free Radic Biol Med ; 212: 241-254, 2024 02 20.
Artículo en Inglés | MEDLINE | ID: mdl-38159891

RESUMEN

Despite the crucial role of peroxisomes in cellular redox maintenance, little is known about how these organelles transport redox metabolites across their membrane. In this study, we sought to assess potential associations between the cellular redox landscape and the human peroxisomal solute carrier SLC25A17, also known as PMP34. This carrier has been reported to function as a counter-exchanger of adenine-containing cofactors such as coenzyme A (CoA), dephospho-CoA, flavin adenine dinucleotide, nicotinamide adenine dinucleotide (NAD+), adenosine 3',5'-diphosphate, flavin mononucleotide, and adenosine monophosphate. We found that inactivation of SLC25A17 resulted in a shift toward a more reductive state in the glutathione redox couple (GSSG/GSH) across HEK-293 cells, HeLa cells, and SV40-transformed mouse embryonic fibroblasts, with variable impact on the NADPH levels and the NAD+/NADH redox couple. This phenotype could be rescued by the expression of Candida boidinii Pmp47, a putative SLC25A17 orthologue reported to be essential for the metabolism of medium-chain fatty acids in yeast peroxisomes. In addition, we provide evidence that the alterations in the redox state are not caused by changes in peroxisomal antioxidant enzyme expression, catalase activity, H2O2 membrane permeability, or mitochondrial fitness. Furthermore, treating control and ΔSLC25A17 cells with dehydroepiandrosterone, a commonly used glucose-6-phosphate dehydrogenase inhibitor affecting NADPH regeneration, revealed a kinetic disconnection between the peroxisomal and cytosolic glutathione pools. Additionally, these experiments underscored the impact of SLC25A17 loss on peroxisomal NADPH metabolism. The relevance of these findings is discussed in the context of the still ambiguous substrate specificity of SLC25A17 and the recent observation that the mammalian peroxisomal membrane is readily permeable to both GSH and GSSG.


Asunto(s)
Peróxido de Hidrógeno , NAD , Animales , Humanos , Ratones , NAD/metabolismo , NADP/metabolismo , Disulfuro de Glutatión/metabolismo , Células HeLa , Células HEK293 , Peróxido de Hidrógeno/metabolismo , Fibroblastos/metabolismo , Peroxisomas/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Glutatión/metabolismo , Oxidación-Reducción , Homeostasis , Adenina/metabolismo , Mamíferos/metabolismo
4.
Proc Natl Acad Sci U S A ; 120(43): e2301733120, 2023 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-37862382

RESUMEN

Retinal pigment epithelium (RPE) cells have to phagocytose shed photoreceptor outer segments (POS) on a daily basis over the lifetime of an organism, but the mechanisms involved in the digestion and recycling of POS lipids are poorly understood. Although it was frequently assumed that peroxisomes may play an essential role, this was never investigated. Here, we show that global as well as RPE-selective loss of peroxisomal ß-oxidation in multifunctional protein 2 (MFP2) knockout mice impairs the digestive function of lysosomes in the RPE at a very early age, followed by RPE degeneration. This was accompanied by prolonged mammalian target of rapamycin activation, lipid deregulation, and mitochondrial structural anomalies without, however, causing oxidative stress or energy shortage. The RPE degeneration caused secondary photoreceptor death. Notably, the deterioration of the RPE did not occur in an Mfp2/rd1 mutant mouse line, characterized by absent POS shedding. Our findings prove that peroxisomal ß-oxidation in the RPE is essential for handling the polyunsaturated fatty acids present in ingested POS and shed light on retinopathy in patients with peroxisomal disorders. Our data also have implications for gene therapy development as they highlight the importance of targeting the RPE in addition to the photoreceptor cells.


Asunto(s)
Lisosomas , Epitelio Pigmentado de la Retina , Ratones , Humanos , Animales , Epitelio Pigmentado de la Retina/metabolismo , Lisosomas/metabolismo , Fagocitosis/genética , Estrés Oxidativo , Ratones Noqueados , Mamíferos
5.
Free Radic Biol Med ; 206: 22-32, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37355054

RESUMEN

Reduced (NADH) and oxidized (NAD+) nicotinamide adenine dinucleotides are ubiquitous hydride-donating/accepting cofactors that are essential for cellular bioenergetics. Peroxisomes are single-membrane-bounded organelles that are involved in multiple lipid metabolism pathways, including beta-oxidation of fatty acids, and which contain several NAD(H)-dependent enzymes. Although maintenance of NAD(H) homeostasis in peroxisomes is considered essential for peroxisomal beta-oxidation, little is known about the regulation thereof. To resolve this issue, we have developed methods to specifically measure intraperoxisomal NADH levels in human cells using peroxisome-targeted NADH biosensors. By targeted CRISPR-Cas9-mediated genome editing of human cells, we showed with these sensors that the NAD+/NADH ratio in cytosol and peroxisomes are closely connected and that this crosstalk is mediated by intraperoxisomal lactate and malate dehydrogenases, generated via translational stop codon readthrough of the LDHB and MDH1 mRNAs. Our study provides evidence for the existence of two independent redox shuttle systems in human peroxisomes that regulate peroxisomal NAD+/NADH homeostasis. This is the first study that shows a specific metabolic function of protein isoforms generated by translational stop codon readthrough in humans.


Asunto(s)
NAD , Peroxisomas , Humanos , NAD/metabolismo , Codón de Terminación/metabolismo , Peroxisomas/metabolismo , Biosíntesis de Proteínas , Oxidación-Reducción , Homeostasis
6.
Antioxidants (Basel) ; 12(6)2023 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-37371965

RESUMEN

Peroxisomes serve as important centers for cellular redox metabolism and communication. However, fundamental gaps remain in our understanding of how the peroxisomal redox equilibrium is maintained. In particular, very little is known about the function of the nonenzymatic antioxidant glutathione in the peroxisome interior and how the glutathione antioxidant system balances with peroxisomal protein thiols. So far, only one human peroxisomal glutathione-consuming enzyme has been identified: glutathione S-transferase 1 kappa (GSTK1). To study the role of this enzyme in peroxisomal glutathione regulation and function, a GSTK1-deficient HEK-293 cell line was generated and fluorescent redox sensors were used to monitor the intraperoxisomal GSSG/GSH and NAD+/NADH redox couples and NADPH levels. We provide evidence that ablation of GSTK1 does not change the basal intraperoxisomal redox state but significantly extends the recovery period of the peroxisomal glutathione redox sensor po-roGFP2 upon treatment of the cells with thiol-specific oxidants. Given that this delay (i) can be rescued by reintroduction of GSTK1, but not its S16A active site mutant, and (ii) is not observed with a glutaredoxin-tagged version of po-roGFP2, our findings demonstrate that GSTK1 contains GSH-dependent disulfide bond oxidoreductase activity.

7.
Antioxidants (Basel) ; 12(3)2023 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-36978861

RESUMEN

Peroxisomes are functionally specialized organelles that harbor multiple hydrogen peroxide (H2O2)-producing and -degrading enzymes. Given that this oxidant functions as a major redox signaling agent, peroxisomes have the intrinsic ability to mediate and modulate H2O2-driven processes, including autophagy. However, it remains unclear whether changes in peroxisomal H2O2 (po-H2O2) emission impact the autophagic process and to which extent peroxisomes with a disturbed H2O2 metabolism are selectively eliminated through a process called "pexophagy". To address these issues, we generated and validated HEK-293 and HeLa pexophagy reporter cell lines in which the production of po-H2O2 can be modulated. We demonstrate that (i) po-H2O2 can oxidatively modify multiple selective autophagy receptors and core autophagy proteins, (ii) neither modest nor robust levels of po-H2O2 emission act as a prime determinant of pexophagy, and (iii) high levels of po-H2O2 impair autophagic flux by oxidative inhibition of enzymes involved in LC3II formation. Unexpectedly, our analyses also revealed that the autophagy receptor optineurin can be recruited to peroxisomes, thereby triggering pexophagy. In summary, these findings lend support to the idea that, during cellular and organismal aging, peroxisomes with enhanced H2O2 release can escape pexophagy and downregulate autophagic activity, thereby perpetuating the accumulation of damaged and toxic cellular debris.

8.
ACS Chem Biol ; 18(4): 686-692, 2023 04 21.
Artículo en Inglés | MEDLINE | ID: mdl-36920024

RESUMEN

Aspartic proteases are a small class of proteases implicated in a wide variety of human diseases. Covalent chemical probes for photoaffinity labeling (PAL) of these proteases are underdeveloped. We here report a full on-resin synthesis of clickable PAL probes based on the natural product inhibitor pepstatin incorporating a minimal diazirine reactive group. The position of this group in the inhibitor determines the labeling efficiency. The most effective probes sensitively detect cathepsin D, a biomarker for breast cancer, in cell lysates. Moreover, through chemical proteomics experiments and deep learning algorithms, we identified sequestosome-1, an important player in autophagy, as a direct interaction partner and substrate of cathepsin D.


Asunto(s)
Ácido Aspártico Endopeptidasas , Catepsina D , Pepstatinas , Etiquetas de Fotoafinidad , Humanos , Ácido Aspártico Endopeptidasas/química , Catepsina D/química , Diazometano , Pepstatinas/química , Pepstatinas/farmacología , Etiquetas de Fotoafinidad/química , Proteína Sequestosoma-1/química
9.
Methods Mol Biol ; 2643: 161-181, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36952185

RESUMEN

As the reversible oxidation of protein cysteine thiols is an important mechanism in signal transduction, it is essential to have access to experimental approaches that allow for spatiotemporal indexing of the cellular sulfenome in response to local changes in H2O2 levels. Here, we provide a step-by-step guide for enriching and identifying the sulfenome of mammalian cells at the subcellular level in response to peroxisome-derived H2O2 by the combined use of (i) a previously developed cell line in which peroxisomal H2O2 production can be induced in a time- and dose-dependent manner; (ii) YAP1C, a genetically encoded yeast AP-1-like transcription factor-based probe that specifically reacts with S-sulfenylated cysteines and traps them through mixed disulfide bonds; and (iii) mass spectrometry. Given that this approach includes differential labeling of reduced and reversibly oxidized cysteine residues, it can also provide additional information on the positions of the modified cysteines. Gaining more in-depth insight into the complex nature of how alterations in peroxisomal H2O2 metabolism modulate the cellular sulfenome is key to our understanding of how these organelles act as redox signaling hubs in health and disease.


Asunto(s)
Cisteína , Peróxido de Hidrógeno , Animales , Cisteína/metabolismo , Peróxido de Hidrógeno/metabolismo , Peroxisomas/metabolismo , Proteínas/metabolismo , Compuestos de Sulfhidrilo/metabolismo , Oxidación-Reducción , Mamíferos/metabolismo
10.
Methods Mol Biol ; 2643: 183-197, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36952186

RESUMEN

The pyridine nucleotides NAD(H) and NADP(H) are key molecules in cellular metabolism, and measuring their levels and oxidation states with spatiotemporal precision is of great value in biomedical research. Traditional methods to assess the redox state of these metabolites are intrusive and prohibit live-cell quantifications. This obstacle was surpassed by the development of genetically encoded fluorescent biosensors enabling dynamic measurements with subcellular resolution in living cells. Here, we provide step-by-step protocols to monitor the intraperoxisomal NADPH levels and NAD+/NADH redox state in cellulo by using targeted variants of iNAP1 and SoNar, respectively.


Asunto(s)
NAD , NAD/metabolismo , NADP/metabolismo , Oxidación-Reducción , Proteínas Luminiscentes/metabolismo
11.
Adv Sci (Weinh) ; 9(24): e2200459, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35780480

RESUMEN

Despite the importance of cell characterization and identification for diagnostic and therapeutic applications, developing fast and label-free methods without (bio)-chemical markers or surface-engineered receptors remains challenging. Here, we exploit the natural cellular response to mild thermal stimuli and propose a label- and receptor-free method for fast and facile cell characterization. Cell suspensions in a dedicated sensor are exposed to a temperature gradient, which stimulates synchronized and spontaneous cell-detachment with sharply defined time-patterns, a phenomenon unknown from literature. These patterns depend on metabolic activity (controlled through temperature, nutrients, and drugs) and provide a library of cell-type-specific indicators, allowing to distinguish several yeast strains as well as cancer cells. Under specific conditions, synchronized glycolytic-type oscillations are observed during detachment of mammalian and yeast-cell ensembles, providing additional cell-specific signatures. These findings suggest potential applications for cell viability analysis and for assessing the collective response of cancer cells to drugs.


Asunto(s)
Células Eucariotas , Saccharomyces cerevisiae , Animales , Glucólisis , Mamíferos , Saccharomyces cerevisiae/metabolismo
12.
Front Cell Dev Biol ; 10: 888873, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35557958

RESUMEN

The involvement of peroxisomes in cellular hydrogen peroxide (H2O2) metabolism has been a central theme since their first biochemical characterization by Christian de Duve in 1965. While the role of H2O2 substantially changed from an exclusively toxic molecule to a signaling messenger, the regulatory role of peroxisomes in these signaling events is still largely underappreciated. This is mainly because the number of known protein targets of peroxisome-derived H2O2 is rather limited and testing of specific targets is predominantly based on knowledge previously gathered in related fields of research. To gain a broader and more systematic insight into the role of peroxisomes in redox signaling, new approaches are urgently needed. In this study, we have combined a previously developed Flp-In T-REx 293 cell system in which peroxisomal H2O2 production can be modulated with a yeast AP-1-like-based sulfenome mining strategy to inventory protein thiol targets of peroxisome-derived H2O2 in different subcellular compartments. By using this approach, we identified more than 400 targets of peroxisome-derived H2O2 in peroxisomes, the cytosol, and mitochondria. We also observed that the sulfenylation kinetics profiles of key targets belonging to different protein families (e.g., peroxiredoxins, annexins, and tubulins) can vary considerably. In addition, we obtained compelling but indirect evidence that peroxisome-derived H2O2 may oxidize at least some of its targets (e.g., transcription factors) through a redox relay mechanism. In conclusion, given that sulfenic acids function as key intermediates in H2O2 signaling, the findings presented in this study provide valuable insight into how peroxisomes may be integrated into the cellular H2O2 signaling network.

13.
PLoS One ; 16(4): e0250996, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33930094

RESUMEN

The calcineurin inhibitors (CNI) cyclosporine A and tacrolimus comprise the basis of immunosuppressive regimes in all solid organ transplantation. However, long-term or high exposure to CNI leads to histological and functional renal damage (CNI-associated nephrotoxicity). In the kidney, proximal tubule cells are the only cells that metabolize CNI and these cells are believed to play a central role in the origin of the toxicity for this class of drugs, although the underlying mechanisms are not clear. Several studies have reported oxidative stress as an important mediator of CNI-associated nephrotoxicity in response to CNI exposure in different available proximal tubule cell models. However, former models often made use of supra-therapeutic levels of tissue drug exposure. In addition, they were not shown to express the relevant enzymes (e.g., CYP3A5) and transporters (e.g., P-glycoprotein) for the metabolism of CNI in human proximal tubule cells. Moreover, the used methods for detecting ROS were potentially prone to false positive results. In this study, we used a novel proximal tubule cell model established from human allograft biopsies that demonstrated functional expression of relevant enzymes and transporters for the disposition of CNI. We exposed these cells to CNI concentrations as found in tissue of stable solid organ transplant recipients with therapeutic blood concentrations. We measured the glutathione redox balance in this cell model by using organelle-targeted variants of roGFP2, a highly sensitive green fluorescent reporter protein that dynamically equilibrates with the glutathione redox couple through the action of endogenous glutaredoxins. Our findings provide evidence that CNI, at concentrations commonly found in allograft biopsies, do not alter the glutathione redox balance in mitochondria, peroxisomes, and the cytosol. However, at supra-therapeutic concentrations, cyclosporine A but not tacrolimus increases the ratio of oxidized/reduced glutathione in the mitochondria, suggestive of imbalances in the redox environment.


Asunto(s)
Inhibidores de la Calcineurina/farmacología , Glutatión/metabolismo , Túbulos Renales Proximales/efectos de los fármacos , Riñón/efectos de los fármacos , Trasplante de Órganos/métodos , Células Cultivadas , Ciclosporina/farmacología , Rechazo de Injerto/prevención & control , Humanos , Riñón/metabolismo , Riñón/patología , Túbulos Renales Proximales/metabolismo , Oxidación-Reducción , Tacrolimus/farmacología
14.
Front Cell Dev Biol ; 9: 814047, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34977048

RESUMEN

Peroxisomes harbor numerous enzymes that can produce or degrade hydrogen peroxide (H2O2). Depending on its local concentration and environment, this oxidant can function as a redox signaling molecule or cause stochastic oxidative damage. Currently, it is well-accepted that dysfunctional peroxisomes are selectively removed by the autophagy-lysosome pathway. This process, known as "pexophagy," may serve a protective role in curbing peroxisome-derived oxidative stress. Peroxisomes also have the intrinsic ability to mediate and modulate H2O2-driven processes, including (selective) autophagy. However, the molecular mechanisms underlying these phenomena are multifaceted and have only recently begun to receive the attention they deserve. This review provides a comprehensive overview of what is known about the bidirectional relationship between peroxisomal H2O2 metabolism and (selective) autophagy. After introducing the general concepts of (selective) autophagy, we critically examine the emerging roles of H2O2 as one of the key modulators of the lysosome-dependent catabolic program. In addition, we explore possible relationships among peroxisome functioning, cellular H2O2 levels, and autophagic signaling in health and disease. Finally, we highlight the most important challenges that need to be tackled to understand how alterations in peroxisomal H2O2 metabolism contribute to autophagy-related disorders.

15.
Biochim Biophys Acta Mol Cell Res ; 1867(7): 118709, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32224193

RESUMEN

Peroxisomes are highly dynamic subcellular compartments with important functions in lipid and ROS metabolism. Impaired peroxisomal function can lead to severe metabolic disorders with developmental defects and neurological abnormalities. Recently, a new group of disorders has been identified, characterised by defects in the membrane dynamics and division of peroxisomes rather than by loss of metabolic functions. However, the contribution of impaired peroxisome plasticity to the pathophysiology of those disorders is not well understood. Mitochondrial fission factor (MFF) is a key component of both the peroxisomal and mitochondrial division machinery. Patients with MFF deficiency present with developmental and neurological abnormalities. Peroxisomes (and mitochondria) in patient fibroblasts are highly elongated as a result of impaired organelle division. The majority of studies into MFF-deficiency have focused on mitochondrial dysfunction, but the contribution of peroxisomal alterations to the pathophysiology is largely unknown. Here, we show that MFF deficiency does not cause alterations to overall peroxisomal biochemical function. However, loss of MFF results in reduced import-competency of the peroxisomal compartment and leads to the accumulation of pre-peroxisomal membrane structures. We show that peroxisomes in MFF-deficient cells display alterations in peroxisomal redox state and intra-peroxisomal pH. Removal of elongated peroxisomes through induction of autophagic processes is not impaired. A mathematical model describing key processes involved in peroxisome dynamics sheds further light into the physical processes disturbed in MFF-deficient cells. The consequences of our findings for the pathophysiology of MFF-deficiency and related disorders with impaired peroxisome plasticity are discussed.


Asunto(s)
Proteínas de la Membrana/genética , Mitocondrias/genética , Dinámicas Mitocondriales/genética , Proteínas Mitocondriales/genética , Peroxisomas/genética , Autofagia/genética , GTP Fosfohidrolasas/genética , Humanos , Metabolismo de los Lípidos/genética , Proteínas Asociadas a Microtúbulos/genética , Especies Reactivas de Oxígeno/metabolismo
16.
Front Cell Dev Biol ; 8: 144, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32266253

RESUMEN

Mice lacking PMP34, a peroxisomal membrane transporter encoded by Slc25a17, did not manifest any obvious phenotype on a Swiss Webster genetic background, even with various treatments designed to unmask impaired peroxisomal functioning. Peroxisomal α- and ß-oxidation rates in PMP34 deficient fibroblasts or liver slices were not or only modestly affected and in bile, no abnormal bile acid intermediates were detected. Peroxisomal content of cofactors like CoA, ATP, NAD+, thiamine-pyrophosphate and pyridoxal-phosphate, based on direct or indirect data, appeared normal as were tissue plasmalogen and very long chain fatty acid levels. However, upon dietary phytol administration, the knockout mice displayed hepatomegaly, liver inflammation, and an induction of peroxisomal enzymes. This phenotype was partially mediated by PPARα. Hepatic triacylglycerols and cholesterylesters were elevated and both phytanic acid and pristanic acid accumulated in the liver lipids, in females to higher extent than in males. In addition, pristanic acid degradation products were detected, as wells as the CoA-esters of all these branched fatty acids. Hence, PMP34 is important for the degradation of phytanic/pristanic acid and/or export of their metabolites. Whether this is caused by a shortage of peroxisomal CoA affecting the intraperoxisomal formation of pristanoyl-CoA (and perhaps of phytanoyl-CoA), or the SCPx-catalyzed thiolytic cleavage during pristanic acid ß-oxidation, could not be proven in this model, but the phytol-derived acyl-CoA profile is compatible with the latter possibility. On the other hand, the normal functioning of other peroxisomal pathways, and especially bile acid formation, seems to exclude severe transport problems or a shortage of CoA, and other cofactors like FAD, NAD(P)+, TPP. Based on our findings, PMP34 deficiency in humans is unlikely to be a life threatening condition but could cause elevated phytanic/pristanic acid levels in older adults.

17.
Adv Exp Med Biol ; 1299: 19-30, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33417204

RESUMEN

Peroxisomes are multifunctional organelles best known for their role in cellular lipid and hydrogen peroxide metabolism. In this chapter, we review and discuss the diverse functions of this organelle in brain physiology and neurodegeneration, with a particular focus on oxidative stress. We first briefly summarize what is known about the various nexuses among peroxisomes, the central nervous system, oxidative stress, and neurodegenerative disease. Next, we provide a comprehensive overview of the complex interplay among peroxisomes, oxidative stress, and neurodegeneration in patients suffering from primary peroxisomal disorders. Particular examples that are discussed include the prototypic Zellweger spectrum disorders and X-linked adrenoleukodystrophy, the most prevalent peroxisomal disorder. Thereafter, we elaborate on secondary peroxisome dysfunction in more common neurodegenerative disorders, including Alzheimer's disease, Parkinson's disease, and multiple sclerosis. Finally, we highlight some issues and challenges that need to be addressed to progress towards therapies and prevention strategies preserving, normalizing, or improving peroxisome activity in patients suffering from neurodegenerative conditions.


Asunto(s)
Enfermedades Neurodegenerativas/metabolismo , Enfermedades Neurodegenerativas/patología , Estrés Oxidativo , Peroxisomas/metabolismo , Peroxisomas/patología , Adrenoleucodistrofia/metabolismo , Adrenoleucodistrofia/patología , Enfermedad de Alzheimer , Humanos , Esclerosis Múltiple , Enfermedad de Parkinson , Síndrome de Zellweger/metabolismo , Síndrome de Zellweger/patología
18.
Int J Mol Sci ; 20(15)2019 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-31357514

RESUMEN

Hydrogen peroxide (H2O2), a non-radical reactive oxygen species generated during many (patho)physiological conditions, is currently universally recognized as an important mediator of redox-regulated processes. Depending on its spatiotemporal accumulation profile, this molecule may act as a signaling messenger or cause oxidative damage. The focus of this review is to comprehensively evaluate the evidence that peroxisomes, organelles best known for their role in cellular lipid metabolism, also serve as hubs in the H2O2 signaling network. We first briefly introduce the basic concepts of how H2O2 can drive cellular signaling events. Next, we outline the peroxisomal enzyme systems involved in H2O2 metabolism in mammals and reflect on how this oxidant can permeate across the organellar membrane. In addition, we provide an up-to-date overview of molecular targets and biological processes that can be affected by changes in peroxisomal H2O2 metabolism. Where possible, emphasis is placed on the molecular mechanisms and factors involved. From the data presented, it is clear that there are still numerous gaps in our knowledge. Therefore, gaining more insight into how peroxisomes are integrated in the cellular H2O2 signaling network is of key importance to unravel the precise role of peroxisomal H2O2 production and scavenging in normal and pathological conditions.


Asunto(s)
Susceptibilidad a Enfermedades , Homeostasis , Peróxido de Hidrógeno/metabolismo , Peroxisomas/metabolismo , Transducción de Señal , Animales , Transporte Biológico , Permeabilidad de la Membrana Celular , Metabolismo Energético , Humanos , Mitocondrias/metabolismo , Oxidación-Reducción , Estrés Oxidativo , Especies Reactivas de Oxígeno/metabolismo
19.
Biochim Biophys Acta Biomembr ; 1861(10): 182991, 2019 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-31129117

RESUMEN

Peroxisomes have the intrinsic ability to produce and scavenge hydrogen peroxide (H2O2), a diffusible second messenger that controls diverse cellular processes by modulating protein activity through cysteine oxidation. Current evidence indicates that H2O2, a molecule whose physicochemical properties are similar to those of water, traverses cellular membranes through specific aquaporin channels, called peroxiporins. Until now, no peroxiporin-like proteins have been identified in the peroxisomal membrane, and it is widely assumed that small molecules such as H2O2 can freely permeate this membrane through PXMP2, a non-selective pore-forming protein with an upper molecular size limit of 300-600 Da. By employing the CRISPR-Cas9 technology in combination with a Flp-In T-REx 293 cell line that can be used to selectively generate H2O2 inside peroxisomes in a controlled manner, we provide evidence that PXMP2 is not essential for H2O2 permeation across the peroxisomal membrane, neither in control cells nor in cells lacking PEX11B, a peroxisomal membrane-shaping protein whose yeast homologue facilitates the permeation of molecules up to 400 Da. During the course of this study, we unexpectedly noted that inactivation of PEX11B leads to partial localization of both peroxisomal membrane and matrix proteins to mitochondria and a decrease in peroxisome density. These findings are discussed in terms of the formation of a functional peroxisomal matrix protein import machinery in the outer mitochondrial membrane.


Asunto(s)
Proteínas de la Membrana/metabolismo , Peroxisomas/metabolismo , Línea Celular Tumoral , Membrana Celular/metabolismo , Células HEK293 , Humanos , Peróxido de Hidrógeno/metabolismo , Mitocondrias/metabolismo , Oxidación-Reducción , Transporte de Proteínas
20.
Mol Metab ; 22: 71-83, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30795913

RESUMEN

OBJECTIVES: Peroxisomes play a crucial role in lipid and reactive oxygen species metabolism, but their importance for pancreatic ß-cell functioning is presently unknown. To examine the contribution of peroxisomal metabolism to ß-cell homeostasis in mice, we inactivated PEX5, the import receptor for peroxisomal matrix proteins, in an inducible and ß-cell restricted manner (Rip-Pex5-/- mice). METHODS: After tamoxifen-induced recombination of the Pex5 gene at the age of 6 weeks, mice were fed either normal chow or a high-fat diet for 12 weeks and were subsequently phenotyped. RESULTS: Increased levels of very long chain fatty acids and reduced levels of plasmalogens in islets confirmed impairment of peroxisomal fatty acid oxidation and ether lipid synthesis, respectively. The Rip-Pex5-/- mice fed on either diet exhibited glucose intolerance associated with impaired insulin secretion. Ultrastructural and biochemical analysis revealed a decrease in the density of mature insulin granules and total pancreatic insulin content, which was further accompanied by mitochondrial disruptions, reduced complex I activity and massive vacuole overload in ß-cells. RNAseq analysis suggested that cell death pathways were affected in islets from HFD-fed Rip-Pex5-/- mice. Consistent with this change we observed increased ß-cell apoptosis in islets and a decrease in ß-cell mass. CONCLUSIONS: Our data indicate that normal peroxisome metabolism in ß-cells is crucial to preserve their structure and function.


Asunto(s)
Células Secretoras de Insulina/metabolismo , Peroxisomas/metabolismo , Animales , Masculino , Ratones , Ratones Noqueados , Ratones Transgénicos , Receptor de la Señal 1 de Direccionamiento al Peroxisoma/deficiencia , Receptor de la Señal 1 de Direccionamiento al Peroxisoma/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...