Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Eur J Med Chem ; 238: 114443, 2022 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-35635945

RESUMEN

We previously showed that the anti-fungal drug ciclopirox olamine effectively inhibits replication of herpes simplex virus (HSV)-1 and HSV-2. Given the rise of HSV strains that are resistant to nucleos(t)ide analog treatment, as well as the incomplete efficacy of nucleos(t)ide analogs, new inhibitory compounds must be explored for potential use in the treatment of HSV infection. In the present study, we analyzed 44 compounds derived from the core structure of ciclopirox olamine for inhibitory activity against HSV. Thirteen of these derivative compounds inhibited HSV-2 replication by > 1000- to ∼100,000-fold at 1 µM and displayed EC50 values lower than that of acyclovir, as well as low cytotoxicity, indicating their strong therapeutic potential. Through structural comparison, we also provide evidence for the importance of various structural motifs to the efficacy of ciclopirox and its derivatives, namely hydrophobic groups at R4 and R6 of the ciclopirox core structure. Like ciclopirox, representative analogs exhibit some oral bioavailability but are rapidly cleared in vivo. Together, these results will guide further development of N-hydroxypyridones as HSV therapeutics.


Asunto(s)
Herpes Simple , Herpesvirus Humano 1 , Aciclovir/química , Aciclovir/farmacología , Antifúngicos/farmacología , Antifúngicos/uso terapéutico , Antivirales/uso terapéutico , Ciclopirox/farmacología , Ciclopirox/uso terapéutico , Herpes Simple/tratamiento farmacológico , Herpesvirus Humano 2 , Humanos , Replicación Viral
2.
Medchemcomm ; 10(7): 1173-1176, 2019 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-31391890

RESUMEN

We previously reported that troponoid compounds profoundly inhibit replication of herpes simplex virus (HSV)-1 and HSV-2 in cell culture, including acyclovir-resistant mutants. Synthesis of 26 alpha-hydroxylated tropolones (αHTs) led to a preliminary structure-activity relationship highlighting the potency of bi-phenyl side chains. Here, we explore the structure-activity relationship in more detail, with a focus on various biaryl and other lipophilic molecules. Along with our prior structure-function analysis, we present a refined structure-activity relationship that reveals the importance of the lipophilicity and nature of the side chain for potent anti-HSV-1 activity in cells. We expect this new information will help guide future optimization of αHTs as HSV antivirals.

3.
RSC Adv ; 9(59): 34227-34234, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-33042521

RESUMEN

Here we describe a rapid and divergent synthetic route toward structurally novel αHTs functionalized with either one or two thioether or sulfonyl appendages. Evaluation of this library against hepatitis B and herpes simplex virus, as well as the pathogenic fungus Cryptococcus neoformans, and a human hepatoblastoma (HepDES19) revealed complementary biological profiles and new lead compounds with sub-micromolar activity against each pathogen.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA