Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 95
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
EFSA J ; 22(5): e8769, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38799480

RESUMEN

The EFSA Panel on Food Contact Materials, Enzymes and Processing Aids (CEP) assessed the safety of amines, di-C14-C18-alkyl, oxidised, renamed by the Panel as amines, di-C14-C20-alkyl, oxidised, from hydrogenated vegetable oil. The substance amines, bis(hydrogenated tallow alkyl) oxidised, consisting of the same components, but originating from tallow, is currently authorised as FCM substance No 768. The vegetable-sourced substance is intended to be used at up to 0.1% w/w as antioxidant and/or stabiliser in the manufacture of polyolefin food contact materials (FCM) and articles intended for contact with dry, aqueous and acidic foods. The substance is a mixture consisting of linear N,N-dialkyl hydroxylamines and their corresponding amine, nitrone and oxime derivatives, as well as further components: tert-N-oxides, secondary amides and carboxylic acids. Specific migration was tested from polyethylene samples in 10% ethanol and 3% acetic acid for 2 h at 100°C followed by 10 days at 60°C. None of the non-authorised components were detected to migrate at detection limits (LoD) in the range 0.003-0.029 mg/kg. The LoD of authorised carboxylic acids was 0.35 mg/kg. The Panel reassessed the genotoxicity studies carried out on FCM No 768 and evaluated two new bacterial reverse mutation tests on the nitrone and oxime derivatives as well as new (qualitative/quantitative) structure-activity relationship (Q)SAR analyses on other components. The Panel concluded that the substance did not raise a concern for genotoxicity. The Panel concluded that the substance is not of safety concern for the consumers if it is used as an additive at 0.1% w/w in the manufacture of polyolefin FCM intended to be in contact with foods simulated by food simulants A, B, C and E, except for infant formula and human milk, for storage above 6 months at room temperature and below, including hot-fill conditions and heating up to 100°C for 2 h.

2.
EFSA J ; 22(4): e8703, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38660016

RESUMEN

The EFSA Panel on Food Contact Materials, Enzymes and Processing Aids (CEP) assessed the safety of mixtures of 1,9-nonanediamine (NMDA) and 2-methyl-1,8-octanediamine (MODA) when used to produce polyamide food contact materials for contact with all food types for long-term storage at room temperature and below, including heating up to 121°C for up to 2 h. The polyamide material is also intended to be used for repeated use up to 121°C with short contact (up to 30 min). The polymer typically contains ■■■■■ of a low molecular weight fraction (LMWF, < 1000 Da). The specific migration was measured with polyamide samples in a set of migration tests with 3% acetic acid and 10% ethanol. NMDA and MODA were not detected at ■■■■■, respectively. The specific migration of the LMWF consisting of NMDA/MODA-related species was up to ■■■■■. The overall migration in olive oil was below the detection limit (3 mg/dm2). The most abundant migrating LMWF oligomers were identified. Toxicological studies were performed with NMDA, MODA and with polyamide formulations enriched in the LMWF. The results of genotoxicity assays did not raise a concern. From a repeated-dose oral 90-day toxicity study in rats, the Panel identified a no observed adverse effect level (NOAEL) of 1000 mg/kg body weight per day for the migrating LMWF. The CEP Panel concluded that NMDA/MODA mixtures do not raise a safety concern for the consumer when used as comonomer with terephthalic acid to manufacture polyamide articles intended for contact with all food types, except for infant formula and human milk, if the migration of NMDA and MODA does not exceed 0.05 mg/kg food (as a sum of the two substances) and if the migration of the LMWF consisting of NMDA/MODA-related species does not exceed 5 mg/kg food.

3.
EFSA J ; 22(4): e8705, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38634011

RESUMEN

The EFSA Panel on Food Contact Materials, Enzymes and Processing Aids assessed the safety of calcium tert-butylphosphonate, which is intended to be used as a nucleating agent up to 0.15% w/w for the manufacture of polyolefin food contact materials (FCM) and articles for single and repeated use, in contact with all types of food, including infant formula and human milk. Specific migration was tested using polyethylene samples in 10% ethanol, 3% acetic acid and 95% ethanol for 2 h at 100°C, followed by 238 h at 40°C. Results for all three simulants were near or below the limit of detection of 10 µg/kg. As the solubility of the substance is far above the reported migration and above 60 mg/kg food, no assessment of the particle fraction was needed, and the conventional risk assessment was followed. The substance did not induce gene mutations in bacterial cells and structural chromosomal aberrations in mammalian cells, thus, did not raise concern for genotoxicity. The Panel considered that the use of the substance did not give rise to safety concern related to neurotoxicity for the general population, but this conclusion could not be applied to infants below 16 weeks of age, due to their specific sensitivity and the absence of dedicated data. The Panel concluded that calcium tert-butylphosphonate does not raise a safety concern for the consumer if it is used as a nucleating agent up to 0.15% w/w in the manufacture of polyolefin FCM that are intended to be in contact with all types of food for storage above 6 months at room temperature and below, including temperatures up to 100°C for maximum 2 h and up to 130°C for short durations. The Panel could not evaluate the safety of use to manufacture FCM for contact with infant formula and human milk.

4.
EFSA J ; 22(4): e8694, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38576538

RESUMEN

The EFSA Panel on Food Contact Materials, Enzymes and Processing Aids (CEP) assessed the safety of the substance 'phosphorous acid, triphenyl ester, polymer with 1,4-cyclohexanedimethanol and polypropylene glycol, C10-16 alkyl esters', when used as an additive in all types of polyolefins. The substance is a polymer containing ≤ 13% w/w of a low molecular weight fraction (LMWF, < 1000 Da). A polyethylene sample with 0.15% w/w of the substance was used in a comprehensive set of migration tests with food simulants. The specific migration was up to 0.014 and 0.023 mg/kg in 4% acetic acid and 10% ethanol, respectively. Migration into olive oil was estimated by the Panel to be up to 5.3 mg/kg under worst-case conditions of use. The migrating LMWF species were comprehensively identified. Those without phosphorous were either without alerts for genotoxicity or listed in Regulation (EU) 10/2011 with worst-case migrations well below their respective specific migration limits. Toxicological studies were performed using phosphite and phosphate versions of the substance enriched in its LMWF. The substance does not raise a concern for genotoxicity. From a repeated dose 90-day oral toxicity study in rats with a 50:50 phosphite:phosphate blend, the Panel identified a NOAEL of 250 mg/kg bw per day for each component of the blend. No delayed neurotoxicity in hens was observed. The CEP Panel concluded that the substance does not raise a safety concern for the consumer if its LMWF is not higher than 13% w/w, if it is used at up to 0.15% w/w in polyolefin materials and articles intended for contact with all food types, except for infant formula and human milk, for long-term storage at room temperature and below, after hot-fill and/or heating up to 100°C for up to 2 h, and if its migration does not exceed 5 mg/kg food.

5.
EFSA J ; 21(7): e08100, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37476081

RESUMEN

The EFSA Panel on Food Contact Materials, Enzymes and Processing Aids (CEP) assessed the safety of poly(2-hydroxypropanoic acid), n-octyl/n-decyl esters (OLA8), which is intended to be used as a plasticiser into polylactic acid (PLA) in contact with non-fatty foods. OLA8 is intended to be used at up to 5% and 15% w/w with or without starch, respectively (or with other additives with similar function). The migration for 10 days at 40°C from the film without starch was 0.16 mg/kg in 10% ethanol and 0.01 mg/kg in 3% acetic acid, while from the film with the starch it was well above 0.05 mg/kg food in all simulants. Some of the testing conditions were inconsistently reported. The substance did not induce gene mutations in bacterial cells and did not induce structural chromosomal aberrations or polyploidy in mammalian cells, thus, does not raise concern for genotoxicity. Instead of providing a 90-day oral toxicity study, a hydrolysis study in ■■■■■ was submitted to read-across from the authorised starting substances, ■■■■■ and the ■■■■■. However, the data provided did not allow to perform the read-across, thus no appropriate toxicological data were provided to support migration above 0.05 mg/kg food (including for contact with 10% ethanol and use in combination with starch). The Panel concluded that OLA8 does not raise a safety concern for the consumer if it is used as an additive at up to 15% w/w in the manufacture of PLA articles that do not contain starch (and other additives with similar function), that are intended to be in contact for 10 days at 40°C with foods simulated by 3% acetic acid and from which the migration does not exceed 0.05 mg/kg food.

6.
EFSA J ; 21(2): e07761, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36743686

RESUMEN

The EFSA Panel on Food Contact Materials, Enzymes and Processing Aids (CEP Panel) assessed the safety of the 'waxes, paraffinic, refined, derived from petroleum-based or synthetic hydrocarbon feedstock, low viscosity' (FCM No. 93), for which the uses were requested to be extended for articles in contact with fatty foods. Migration from low-density polyethylene samples containing 1% w/w of a representative wax was tested in food simulants. In fatty food simulants, the migration of mineral oil saturated hydrocarbons (MOSH) ≤ C35 was 142 mg/kg food, exceeding the overall migration limit for plastic FCM. Mineral oil aromatic hydrocarbons (MOAH) with at least two rings are largely removed during the manufacturing process. Based on various lines of evidence, the Panel concluded that any concern for the potential presence of MOAH with two or more conjugated aromatic rings can be ruled out. Based on the genotoxicity studies and on the content of polycyclic aromatic hydrocarbons (PAHs), the substance does not raise a concern for genotoxicity. Available toxicokinetic data showed a limited accumulation of MOSH. No adverse effects were observed up to the highest tested dose of 9 g/kg body weight per day in a 90-day repeated oral toxicity study in Sprague-Dawley rats. The available results showed that FCM No. 93 is devoid of endocrine activity. The provided information on chronic toxicity and carcinogenicity was limited and inadequate to reach conclusions on these endpoints. Therefore, the CEP Panel concluded that under the intended and tested conditions of uses, the substance does not raise safety concern for the consumer if used to a level ensuring that its migration into food is no more than 5 mg/kg.

7.
NanoImpact ; 28: 100416, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35995388

RESUMEN

The widespread integration of engineered nanomaterials into consumer and industrial products creates new challenges and requires innovative approaches in terms of design, testing, reliability, and safety of nanotechnology. The aim of this review article is to give an overview of different product groups in which nanomaterials are present and outline their safety aspects for consumers. Here, release of nanomaterials and related analytical challenges and solutions as well as toxicological considerations, such as dose-metrics, are discussed. Additionally, the utilization of engineered nanomaterials as pharmaceuticals or nutraceuticals to deliver and release cargo molecules is covered. Furthermore, critical pathways for human exposure to nanomaterials, namely inhalation and ingestion, are discussed in the context of risk assessment. Analysis of NMs in food, innovative medicine or food contact materials is discussed. Specific focus is on the presence and release of nanomaterials, including whether nanomaterials can migrate from polymer nanocomposites used in food contact materials. With regard to the toxicology and toxicokinetics of nanomaterials, aspects of dose metrics of inhalation toxicity as well as ingestion toxicology and comparison between in vitro and in vivo conclusions are considered. The definition of dose descriptors to be applied in toxicological testing is emphasized. In relation to potential exposure from different products, opportunities arising from the use of advanced analytical techniques in more unique scenarios such as release of nanomaterials from medical devices such as orthopedic implants are addressed. Alongside higher product performance and complexity, further challenges regarding material characterization and safety, as well as acceptance by the general public are expected.


Asunto(s)
Nanotecnología , Humanos , Reproducibilidad de los Resultados
8.
EFSA J ; 20(6): e07364, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35774587

RESUMEN

The EFSA Panel on Food Contact Materials, Enzymes and Processing Aids (CEP) assessed the safety of the combined use of cyclooctene homopolymer (PCOE) and cobalt stearate (CoS) intended as a oxygen scavenger in the packaging of all kinds of food stored at room temperature or below for up to 6 months. The CoS is the oxidation catalyst and the PCOE is intentionally oxidised for the oxygen scavenging function. They are incorporated into a plastic layer that is intended to be either in direct or indirect contact with the food. The potential migration of cobalt and cyclooctene monomer were below their respective specific migration limit (SML). The potential migration of PCOE non-oxidised oligomeric low molecular weight fraction (LMWF) < 1,000 Da was estimated to be up to ■■■■■ The Panel concluded that this fraction does not raise concern for genotoxicity potential and that the no observed adverse effect level (NOAEL) derived from a subchronic toxicity study would ensure a margin of exposure large enough to not raise a safety concern. However, the Panel considered the analysis of the oxidised PCOE LMWF not sufficiently comprehensive, i.e. that additional oxidation products of different nature may be formed, and that the limit of detection corresponding to ca. ■■■■■ for individual substances is too high. The oxidised PCOE LMWF was not covered by the genotoxicity tests or the 90-day study on the PCOE oligomers. The assessment of the identified potential oxidised migrants was considered conclusive, but not that of the migrants having remained undetected. Therefore, the CEP Panel was not able to conclude on the safety of the proposed use of cyclooctene homopolymer and cobalt stearate together as active substances in a layer for scavenging oxygen, either in direct contact with the food or separated from the food by a passive layer of polymer.

9.
EFSA J ; 20(2): e07135, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35228849

RESUMEN

The EFSA Panel on Food Contact Materials, Enzymes and Processing Aids (CEP) assessed the safety of the substance 'nano precipitated calcium carbonate', FCM substance No. 1087, the particles size of which is in the range of ■■■■■, with a median of ■■■■■. The substance is intended to be used as a filler in all plastics at up to 5% w/w for contact with acidic food and at up to 40% w/w for contact with all other types of food. Articles made with the substance are intended for long-term storage at room temperature or below. The particulate form of the calcium carbonate dissolved rapidly under simulated gastric conditions and, therefore, in accordance with the EFSA Guidance on Particle - Technical Requirements (2021), an assessment of the particles in nanoform is not required and a conventional risk assessment is sufficient. Calcium carbonate, not in nanoform, is authorised for use in plastic FCM without specific migration limit (FCM No. 21) and for use as a food additive (E 170). Migration, from low-density polyethylene (LDPE) containing 40% of the substance, was below 0.03 mg/kg in isooctane and 95% ethanol, and 5.4 mg/kg in 10% ethanol. For LDPE containing 5% of the substance, corresponding to the maximum intended amount for contact with acidic foods, the migration was 17 mg/kg. Therefore, the CEP Panel concluded that the substance nano precipitated calcium carbonate is not of safety concern for consumers when used as a filler in all types of polymer for all types of food, except for infant food formulae. The Panel noted, however, that for acidic foods, the overall migration limit may be exceeded.

10.
EFSA J ; 20(3): e07172, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35281645

RESUMEN

The EFSA Panel on Food Contact Materials, Enzymes and Processing Aids (CEP) assessed the safety of the substance diethyl[[3,5-bis(1,1-dimethylethyl)-4-hydroxyphenyl]methyl] phosphonate, FCM substance No. 1007, which is intended to be used in the polymerisation reaction to make poly(ethylene 2,5-furandicarboxylate) (PEF) plastic. The substance is intended to become a component of the backbone of the polymer and has an antioxidant function that provides thermal stability to the polyester during heat processing. The resulting plastic is intended to be used in contact with all types of food under any condition of time and temperature. A PEF sample made using 0.1% w/w of the substance (which is the maximum intended use) was used in a comprehensive set of migration tests with food simulants. The migration of the substance was below the quantification limits estimated around 10 µg/kg. Solvent extraction tests showed no presence of impurities or breakdown products of the substance. The toxicological data provided are the same as those submitted by the same applicant and previously evaluated. The resulting assessment and conclusions are considered still valid by the CEP Panel. Therefore, the CEP Panel concluded that the substance diethyl[[3,5-bis(1,1-dimethylethyl)-4-hydroxyphenyl]methyl]phosphonate does not raise a safety concern for the consumer if used at up to 0.1% w/w (based on the weight of the polymer) in the polymerisation to make PEF intended for contact with all types of foods under any contact conditions.

11.
EFSA J ; 20(3): e07171, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35281648

RESUMEN

The EFSA Panel on Food Contact Materials, Enzymes and Processing Aids assessed the safety of the substance bleached cellulose pulp, consisting of cellulose fibres (70-92%) and hemicellulose (8-30%) obtained from pine and spruce wood. The substance is intended to be used ■■■■■ in polyethylene and polypropylene food contact materials. The final articles are intended to be used for all food types and for long-term storage at room temperature, with or without a short time at higher temperature, including hot-fill. Low-density polyethylene samples containing ■■■■■ of the substance were subjected to a broad set of migration tests with food simulants and extraction tests with dichloromethane. The limits of detection ranged from ■■■■■ (when specified). The Panel noted that they do not ensure the detection of genotoxic substances at a concentration leading to a human exposure above the Threshold of Toxicological Concern. Moreover, not all possibly migrating substances were identified or amenable to the analytical methods applied. No toxicological data were provided for the substance itself, as its migration into food is not expected. The safety of the potentially migrating substances of low molecular mass detected was addressed individually and was considered adequate. However, the Panel considered this approach insufficient owing to a substantial fraction of unidentified components. The Panel concluded that the information provided by the applicant does not allow the safety assessment of the substances below 1,000 Da from bleached cellulose pulp from pine and spruce wood used in plastic food contact materials potentially migrating into food. Therefore, the Panel could not conclude on the safety of the use of bleached cellulose pulp from pine and spruce wood as a plastic additive.

12.
EFSA J ; 20(2): e07136, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35222726

RESUMEN

The EFSA Panel on Food Contact Materials, Enzymes and Processing Aids (CEP) assessed the safety of the substance identified by the applicant as 'fatty acid-coated nano precipitated calcium carbonate'. It is intended to be used as a filler in all plastics at up to 5% for contact with acidic food and at up to 40% for contact with all other types of food. Articles made with the substance are intended for long-term storage over 6 months at room temperature and below. No information was provided on the mechanism of coating as to whether there is chemical modification of the surface and/or physical adsorption. The substance was not properly characterised, either as pristine material or when incorporated into plastic. Contrary to the non-coated material, data show that the coated material does not dissolve fully and quickly under pH conditions simulating gastrointestinal tract. Surface analysis with electron microscopy of low-density polyethylene (LDPE) samples before and after migration experiments showed major differences that indicate release of the substance from the surface after the tests with 3% acetic acid and to a lesser extent with 10% ethanol. This is consistent with measurable migrations that were up to 39 mg CaCO3/kg when using an LDPE sample made with 5% of the substance in contact with acetic acid for 64 days at 40°C. The required data on the release of nanoparticles and on the potential toxicity of the substance in nanoform were not provided. Therefore, the Panel could not conclude on the safe use of the substance.

13.
EFSA J ; 20(1): e07003, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-35035576

RESUMEN

The EFSA Panel on Food Contact Materials, Enzymes and Processing Aids (CEP) assessed the safety of chopped carbon fibres, from carbonised polyacrylonitrile, as food contact material (FCM) substance No 1086, which is intended to be used as a filler for polyether ether ketone (PEEK) polymer at up to 40% w/w. The plastic is intended for repeated use in contact with all types of foods under all conditions of use. The chopped carbon fibres have a length of ■■■■■ and a diameter of ■■■■■, with no fragments lower than ■■■■■ in any dimension. They do not include a fraction of particles at the nanoscale and are fully embedded in the PEEK matrix, and therefore the fibres and any fragments are not expected to migrate. Based on the results of a battery of three genotoxicity tests, the Panel concluded that the substance does not raise a concern for genotoxicity. Therefore, the CEP Panel concluded that the substance chopped carbon fibres, from carbonised polyacrylonitrile, with a minimum carbon content of 95% (at sizes not at the nanoscale) does not raise a safety concern for the consumer if the substance is used as a filler at up to 40% w/w for PEEK plastic in contact with all food types and under all conditions of use.

14.
EFSA J ; 19(8): e06769, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34377191

RESUMEN

Following a mandate from the European Commission, EFSA has developed a Guidance on Technical Requirements (Guidance on Particle-TR), defining the criteria for assessing the presence of a fraction of small particles, and setting out information requirements for applications in the regulated food and feed product areas (e.g. novel food, food/feed additives, food contact materials and pesticides). These requirements apply to particles requiring specific assessment at the nanoscale in conventional materials that do not meet the definition of engineered nanomaterial as set out in the Novel Food Regulation (EU) 2015/2283. The guidance outlines appraisal criteria grouped in three sections, to confirm whether or not the conventional risk assessment should be complemented with nanospecific considerations. The first group addresses solubility and dissolution rate as key physicochemical properties to assess whether consumers will be exposed to particles. The second group establishes the information requirements for assessing whether the conventional material contains a fraction or consists of small particles, and its characterisation. The third group describes the information to be presented for existing safety studies to demonstrate that the fraction of small particles, including particles at the nanoscale, has been properly evaluated. In addition, in order to guide the appraisal of existing safety studies, recommendations for closing the data gaps while minimising the need for conducting new animal studies are provided. This Guidance on Particle-TR complements the Guidance on risk assessment of nanomaterials to be applied in the food and feed chain, human and animal health updated by the EFSA Scientific Committee as co-published with this Guidance. Applicants are advised to consult both guidance documents before conducting new studies.

15.
EFSA J ; 19(8): e06768, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34377190

RESUMEN

The EFSA has updated the Guidance on risk assessment of the application of nanoscience and nanotechnologies in the food and feed chain, human and animal health. It covers the application areas within EFSA's remit, including novel foods, food contact materials, food/feed additives and pesticides. The updated guidance, now Scientific Committee Guidance on nano risk assessment (SC Guidance on Nano-RA), has taken account of relevant scientific studies that provide insights to physico-chemical properties, exposure assessment and hazard characterisation of nanomaterials and areas of applicability. Together with the accompanying Guidance on Technical requirements for regulated food and feed product applications to establish the presence of small particles including nanoparticles (Guidance on Particle-TR), the SC Guidance on Nano-RA specifically elaborates on physico-chemical characterisation, key parameters that should be measured, methods and techniques that can be used for characterisation of nanomaterials and their determination in complex matrices. The SC Guidance on Nano-RA also details aspects relating to exposure assessment and hazard identification and characterisation. In particular, nanospecific considerations relating to in vitro/in vivo toxicological studies are discussed and a tiered framework for toxicological testing is outlined. Furthermore, in vitro degradation, toxicokinetics, genotoxicity, local and systemic toxicity as well as general issues relating to testing of nanomaterials are described. Depending on the initial tier results, additional studies may be needed to investigate reproductive and developmental toxicity, chronic toxicity and carcinogenicity, immunotoxicity and allergenicity, neurotoxicity, effects on gut microbiome and endocrine activity. The possible use of read-across to fill data gaps as well as the potential use of integrated testing strategies and the knowledge of modes or mechanisms of action are also discussed. The Guidance proposes approaches to risk characterisation and uncertainty analysis.

16.
EFSA J ; 19(8): e06786, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34386098

RESUMEN

The EFSA Panel on Food Contact Materials, Enzymes and Processing Aids (CEP Panel) assessed the safety of the substance 'phosphorous acid, triphenyl ester, polymer with alpha-hydro-omega-hydroxypoly[oxy(methyl-1,2-ethanediyl)], C10-16 alkyl esters' obtained by reaction of ■■■■■ This food contact material (FCM) substance No 1076 was evaluated by the CEP Panel in 2019 for its use in high impact polystyrene. This opinion deals with the safety assessment of the substance when used as an additive at up to 0.025% w/w in acrylonitrile-butadiene-styrene (ABS) copolymers. The plastic is intended for repeated use in contact with aqueous, acidic, alcoholic and oil-in-water emulsion foods, for long-term storage at room temperature and below. Migration from ABS formulated with the substance at 0.02% w/w was up to 0.002 mg/kg in 10% ethanol, 0.005 mg/kg in 3% acetic acid and 0.027 mg/kg in 50% ethanol. Migration levels into 50% ethanol declined under repeated-use test conditions and this decline was considered to also cover repeated contacts with 10% ethanol and 3% acetic acid simulants. The toxicological data are the same as those submitted by the same applicant in a previous dossier (EFSA-Q-2018-00411). They were reported in the scientific opinion of the CEP Panel in 2019 and the conclusions on toxicity are still valid. Overall, the CEP Panel concluded that the substance phosphorous acid, triphenyl esters, polymer with alpha-hydro-omega-hydroxypoly[oxy(methyl-1,2-ethanediyl)], C10-16 alkyl esters, does not raise a safety concern for the consumer if it is used as an additive at up to 0.025% w/w in ABS materials and articles for single and repeated use in contact with aqueous, acidic, alcoholic and oil-in-water emulsion foods, for long-term storage at room temperature and below, and if its migration does not exceed 0.05 mg/kg food.

17.
EFSA J ; 19(8): e06790, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34400977

RESUMEN

The EFSA Panel on Food Contact Materials, Enzymes and Processing Aids (CEP) assessed the safety of the additive silver nanoparticles intended to be used in plastics. All the silver particles are in the size range of 1-100 nm, with about 15 nm mean diameter and 99% by number of particles below 20 nm. The additive is intended to be used as a surface biocide at up to 0.025% w/w in non-polar plastics for contact with a wide variety of foods, times, temperatures and food contact surface/mass of food ratios. The particulate form is maintained when the additive is incorporated into plastics, albeit with some aggregation/agglomeration observed. The data and information on theoretical considerations, on specific migration and abrasion tests show that, under the intended and tested conditions of uses, the silver nanoparticles stay embedded in the polymer, do not migrate and resist release by abrasion, thus, do not give rise to exposure via food and to toxicological concern. There is migration of silver in soluble ionic form up to 6 µg/kg food from the surface of the additive particles. This is below the group restriction of 50 µg silver/kg food proposed by the AFC Panel in 2004 and would lead to a maximum exposure from FCM that would be below the acceptable daily intake (ADI) of 0.9 µg silver ions/kg body weight (bw) per day established by ECHA. Therefore, the Panel concluded that the substance does not raise safety concern for the consumer if used as an additive at up to 0.025% w/w in polymers, such as polyolefins, polyesters and styrenics, that do not swell in contact with aqueous foods and food simulants. The Panel noted, however, that exposure to silver from other sources of dietary exposure may exceed the ADI set by ECHA.

18.
EFSA J ; 18(10): e06247, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-33133270

RESUMEN

The EFSA Panel on Food Contact Materials, Enzymes and Processing Aids (CEP) was requested by the European Commission to re-evaluate the safety of styrene (FCM No 193) for use in plastic food contact materials (FCM) following the classification by the International Agency for Research on Cancer (IARC) as 'probably carcinogenic to humans'. The IARC Monograph pertains to hazard identification, based on studies on high-dose occupational exposures by inhalation and animal studies, also mainly by inhalation. The Panel considered that the IARC conclusions cannot be directly applied to the evaluation of risks for consumers from the oral exposure to styrene, but also concluded that, based on the data provided in the IARC Monograph and by the industry, a concern for genotoxicity associated with oral exposure to styrene cannot be excluded. The migration of styrene into foods packed in styrenic plastics is below 10 µg/kg for the majority of the foods, but up to 230 µg/kg was reported. Migration tends to be high for contact with fatty foods, and/or with high surface to volume ratios of the FCM. Dietary exposure of the consumers to styrene migrating from styrenic plastics was estimated in the order of 0.1 µg/kg body weight (bw) per day. It is in the same range as exposure from styrene present in foods as such. The dietary exposure (food component plus migration from styrenic plastics) is similar or lower than that by inhalation in the general population. Taking the human exposure data into account, the Panel concluded that a systematic review of genotoxicity and mechanistic data, comparative toxicokinetics and analysis of species differences is required for assessing the safety of styrene for its use in FCM.

19.
Molecules ; 25(21)2020 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-33126687

RESUMEN

PET beverage bottles have been recycled and safely reprocessed into new food contact packaging applications for over two decades. During recollection of post-consumer PET beverage bottles, PET containers from non-food products are inevitably co-collected and thereby enter the PET recycling feed stream. To explore the impact of this mixing on the safety-in-use of recycled PET (rPET) bottles, we determined the concentrations of post-consumer substances in PET containers used for a range of non-food product applications taken from the market. Based on the chemical nature and amounts of these post-consumer substances, we evaluated their potential carry-over into beverages filled in rPET bottles starting from different fractions of non-food PET in the recollection systems and taking worst-case cleaning efficiencies of super-clean recycling processes into account. On the basis of the Threshold of Toxicological Concern (TTC) concept and Cramer classification tools, we present a risk assessment for potential exposure of the consumer to the identified contaminants as well as unidentified, potentially genotoxic substances in beverages. As a result, a fraction of 5% non-food PET in the recycling feed stream, which is very likely to occur in the usual recollection systems, does not pose any risk to the consumer. Our data show that fractions of up to 20%, which may sporadically be contained in certain, local recollection systems, would also not raise a safety concern.


Asunto(s)
Embalaje de Alimentos , Tereftalatos Polietilenos/análisis , Reciclaje , Seguridad , Bebidas/análisis , Contaminación de Alimentos
20.
EFSA J ; 18(3): e06047, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-32874259

RESUMEN

The EFSA Panel on Food Contact Materials, Enzymes and Processing Aids (CEP) assessed the safety of N,N-bis(2-hydroxyethyl)stearylamine partially esterified with saturated C16/C18 fatty acids (SABOFOG F1), FCM No 1081, which is intended to be used as an antistatic and anti-fog agent in all types of polymers at up to 2% w/w. It was requested for use in contact with dry food, acidic foods and alcoholic beverages (represented by simulants E, B and C, respectively) with storage up to 6 months at ambient temperature. The migration data provided did not enable the assessment of the safety of applications intended for contact with foods represented by simulants B and C. In the migrate into simulant E, the non-esterified N,N-bis(2-hydroxyethyl)stearylamine was the main constituent. Its mono- and di-esters migrated to a lower extent. According to the data provided, the Panel concluded that the substance does not raise concern for genotoxicity and accumulation in humans. Based on the results of 28-day oral toxicity study with SABOFOG F1 and on the 90-day oral toxicity study with the read-across substance bis(2-hydroxyethyl)oleylamine, the Panel considered the current SML(T) of 1.2 mg/kg food provided a margin sufficiently large to accommodate the uncertainties related to the read-across approach. Overall, the CEP Panel concluded that N,N-bis(2-hydroxyethyl)stearylamine, of which at least ■■■■■ is partially or fully esterified with saturated C16/C18 fatty acids is not of safety concern for the consumer when used at up to 2% (w/w) in all polymers intended for contact with foods represented by simulant E for up to 6 months at room temperature. Additionally, the migration of the sum of N,N-bis(2-hydroxyethyl)stearylamine and its mono- and di-ester, calculated as N,N-bis(2-hydroxyethyl)stearylamine, should not exceed 1.2 mg/kg, i.e. the SML(T) for FCM substances 19 and 20, in which also the migration of the mono- and di-ester of N,N-bis(2-hydroxyethyl)stearylamine should be included.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...