Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Chemphyschem ; 22(19): 1939-1946, 2021 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-34291548

RESUMEN

The antiphase character of the PHIP associated signals after a hydrogenation reaction is particularly sensitive to line broadening introduced by magnetic field inhomogeneities and interferences by the presence of resonance lines steaming from a large amount of thermally polarized spins. These obstacles impose a limitation in the detection of reaction products as well as in the experimental setups. A simple way to overcome these impediments consists of acquiring the signal with a train of refocusing pulses instead of a single r.f. pulse. We present here a number of examples where this multipulse acquisition, denominated PhD-PHIP, displays its potentiality in improving the information related to hyperpolarized spins performed in a sample, where the former parahydrogen nuclei are part of a complex J-coupling network.

2.
Phys Chem Chem Phys ; 15(40): 17233-9, 2013 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-24018735

RESUMEN

Hyperpolarization has found many applications in Nuclear Magnetic Resonance (NMR) and Magnetic Resonance Imaging (MRI). However, its usage is still limited to the observation of relatively fast processes because of its short lifetimes. This issue can be circumvented by storing the hyperpolarization in a slowly relaxing singlet state. Symmetrical molecules hyperpolarized by Parahydrogen Induced Hyperpolarization (PHIP) provide straightforward access to hyperpolarized singlet states because the initial parahydrogen singlet state is preserved at almost any magnetic field strength. In these systems, which show a remarkably long (1)H singlet state lifetime of several minutes, the conversion of the NMR silent singlet state to observable magnetization is feasible due to the existence of singlet-triplet level anti-crossings. Here, we demonstrate that scaling the chemical shift Hamiltonian by rf irradiation is sufficient to transform the singlet into an observable triplet state. Moreover, because the application of one long rf pulse is only partially converting the singlet state, we developed a multiconversion sequence consisting of a train of long rf pulses resulting in successive singlet to triplet conversions. This sequence is used to measure the singlet state relaxation time in a simple way at two different magnetic fields. We show that this approach is valid for almost any magnetic field strength and can be performed even in the less homogeneous field of an MRI scanner, allowing for new applications of hyperpolarized NMR and MRI.


Asunto(s)
Alquinos/química , Campos Magnéticos , Espectroscopía de Resonancia Magnética , Hidrogenación , Modelos Moleculares
3.
J Magn Reson ; 230: 155-9, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23500529

RESUMEN

The application of parahydrogen for the generation of hyperpolarization has increased continuously during the last years. When the chemical reaction is carried out at the same field as the NMR experiment (PASADENA protocol) an antiphase signal is obtained, with a separation of the resonance lines of a few Hz. This imposes a stringent limit to the homogeneity of the magnetic field in order to avoid signal cancellation. In this work we detect the signal arising from hyperpolarized Hexene by means of a CPMG pulse train. After Fourier transformation the obtained J-spectra not only presents an enhanced spectral resolution but also avoids partial peak cancellation.


Asunto(s)
Algoritmos , Hidrógeno/análisis , Hidrógeno/química , Espectroscopía de Resonancia Magnética/métodos , Ensayo de Materiales/métodos , Modelos Químicos , Simulación por Computador , Isomerismo
4.
J Magn Reson ; 219: 33-40, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22595295

RESUMEN

Hyperpolarization by means of ParaHydrogen Induced Polarization (PHIP) has found increasing applications since its discovery. However, in the last decade only a few experiments have been reported describing the hydrogenation of symmetric molecules. A general AA'BB' system is studied here. Calculations of the spin dynamics with the density matrix formalism support the experimental findings, providing profound understanding of the experiments in Cs-symmetric molecules. Level anti-crossings between states related to the triplet and the singlet state of one pair of the protons are identified as being responsible for hyperpolarization transfer in a PHIP experiment, when the former p-H(2) protons occupy the sites AA'. The hydrogenation of acetylene dicarboxylic acid dimethylester with parahydrogen is used to illustrate the case. The theoretical treatment applied to this particular reaction explains the signal enhancements in both groups of protons in the spectrum when the sample is placed in the proper magnetic field strength, including the phase inversion of the signal of the methyl group. The treatment described here can be extended to every molecule which can be approximated as an AA'BB' system.


Asunto(s)
Cesio/química , Hidrógeno/química , Espectroscopía de Resonancia Magnética/métodos , Conformación Molecular
5.
Biochim Biophys Acta ; 1778(5): 1259-66, 2008 May.
Artículo en Inglés | MEDLINE | ID: mdl-18312849

RESUMEN

Arbutin is known to suppress melanin production in murine B16 melanoma cells and inhibit phospholipase action. This encourages the possibility to stabilize it in lipid aggregates for its administration in medical applications. Thus, it was of interest to demonstrate that monomyristoylphosphatidylcholine (14:0 lysoPC) and arbutin may form association complexes. This was studied by Electron Microscopy (EM), 31P Nuclear Magnetic Resonance (31P NMR), Electronic Paramagnetic Resonance (EPR) and Fourier Transform Infrared Spectroscopy (FTIR). EM images show the formation of particles of c.a. 6 nm in diameter. For a 1:1 lysoPC-arbutin molar ratio 31P NMR shows a spectrum with a shoulder that resembles the axially symmetric spectrum characteristic of vesicles. The addition of La3+ ions to the arbutin-lysoPC complex allows one to distinguish two phosphorous populations. These results suggest that arbutin-lysoPC forms vesicles with bilayers stabilized in an interdigitated array. FTIR spectroscopy shows that arbutin interacts with the hydrated population of the carbonyl groups and with the phosphates through the formation of hydrogen bonds. It is interpreted that hydrophobic interactions among the phenol group of arbutin and the acyl chain of lysoPC are responsible for the decrease in acyl chain mobility observed at the 5th C level by EPR. A model proposing the formation of interdigitated bilayers of arbutin-lysoPC could explain the experimental results.


Asunto(s)
Arbutina/química , Membrana Dobles de Lípidos , Lisofosfatidilcolinas/química , Animales , Línea Celular Tumoral , Espectroscopía de Resonancia por Spin del Electrón , Espectroscopía de Resonancia Magnética , Ratones , Microscopía Electrónica de Transmisión , Espectroscopía Infrarroja por Transformada de Fourier
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...