Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 14(1): 18707, 2024 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-39134605

RESUMEN

This research addresses the issue of the heritage preventive conservation in the perspective of energy sustainability, for contributing to the achievement of the Sustainable Development Goals (SDGs) and towards the EU Green Deal. The study analyses and compares four cases associated with different microclimate thresholds as suggested by the standard EN 16893:2018 (Cases 1-3) and as derived from the outputs of three degradation models for preserving paper, wood, and canvas paintings (Case 4). Weather-based indices (degree and gram days) were calculated to estimate trends in the potential energy demand of collection facilities in three European cities belonging to different Köppen-Geiger climate zones (Cfb, Csa, and Dfb), under recent past (1981-2010) and near/far future climate scenarios (2021-2050 and 2071-2100) from two Shared Socioeconomic Pathways (SSP2-4.5 and SSP5-8.5). The findings suggest that adapting facilities' management strategies to focus on collections preservation can facilitate the achievement of 5 out of 17 SDGs, offering a viable alternative to costly energy retrofits and encouraging the development of shared solutions for similar facilities in the same climate zone. The results can contribute to inform the revision of EN 16893 and to face major challenges such as the preservation of paper collections in southern latitudes.

2.
Environ Monit Assess ; 196(1): 85, 2023 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-38147197

RESUMEN

This contribution presents the results of a review of scientific literature on gaseous inorganic pollutants monitored in confined indoor spaces housing cultural heritage. A survey on standards suggesting concentration thresholds together with European projects on the topic was provided. Sixty-six scientific articles were systematically selected based on the PRISMA flow diagram over the period 1984-2021 for a total number of 80 case studies mainly located in Europe (64%). Monitoring was mainly performed in museums and galleries (61%), specifically in exhibition rooms (79%). Active devices were rarely employed, whereas passive samplers, exposed in situ and then laboratory-analysed, were mostly used for nitrogen dioxide and sulphur dioxide monitoring. Direct-reading continuous devices were widely used for ozone monitoring. It was found that average concentrations of ozone were below 5 ppb in only 50% of cases, nitrogen dioxide below 10 ppb in more than 60% of cases, nitric oxide below 5 ppb in 30% of cases, nitric and nitrous acid below 1 ppb in less than 50% of cases, sulphur dioxide below 2 ppb in more than 60% of cases, and hydrogen sulphide below 0.1 ppb in only 25% of cases. Comparisons were performed following the thresholds suggested in the literature. The lowest concentration values were usually associated to the use of mechanical ventilation systems equipped with air filters and to non-urban case studies. The low number of case studies can be due to the difficulties to perform monitoring in conservation spaces with current instruments. Further research should be conducted to uniform standards that suggest instruments' requirements and pollutant thresholds to limit degradation on cultural materials.


Asunto(s)
Contaminantes Ambientales , Ozono , Dióxido de Nitrógeno , Dióxido de Azufre , Monitoreo del Ambiente
3.
Herit Sci ; 10(1): 80, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35702320

RESUMEN

The Alessandrina Library was founded in 1667 by pope Alexander VII Chigi and is nowadays housed in the Campus of Sapienza University of Rome (Italy). Within its Ancient (mostly made of rag paper) and Modern (mostly made of contemporary paper) collections, it includes more than one million books produced from the XVI to the XXI century. In 2019, six thermo-hygrometers were deployed in its multi-storey repository to monitor temperature (T) and relative humidity (RH). Hourly T and RH data collected over 2 years allowed us to evaluate spatial and temporal thermo-hygrometric distributions and to carry out a comprehensive assessment of the climate-induced risks (mechanical, chemical, and biological deterioration mechanisms). Vertical temperature gradients associated with unstable conditions occurred in winter, resulting in upraising air flows up to the ceiling. The risky short-term RH fluctuations (EN 15757:2010) were determined to avoid mechanical stress in case of loans, relocation, and consultation. The Time Weighted Expected Lifetime (TWEL) index was used to evaluate the chemical risk for different paper-based collections as a function of their acidity and degree of polymerisation, also considering the typical response time of paper books to T and RH changes. The TWEL calculation estimated that the durability of acidic paper was around 300 years and highlighted that rag paper could be subject to cellulose hydrolysis only in summer and autumn, while contemporary paper was mostly at no risk. The risk of mould germination (Sedlbauer diagram) was possible on few days in Autumn, while the production of insect eggs (Brimblecombe empirical function) was favoured during approximately 42% of time over the year. In addition, illuminance and colorimetric measurements (performed on selected book covers) showed that light-sensitive objects could be exposed to the photodeterioration risk in the east-facing side of the repository. Although the investigation focussed on a specific case study, a similar approach could be effectively adapted to most library and archival repositories conserving paper-based collections.

4.
Sensors (Basel) ; 22(12)2022 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-35746334

RESUMEN

The deployment of sensors is the first issue encountered when microclimate monitoring is planned in spaces devoted to the conservation of artworks. Sometimes, the first decision regarding the position of sensors may not be suitable for characterising the microclimate close to climate-sensitive artworks or should be revised in light of new circumstances. This paper fits into this context by proposing a rational approach for a posteriori deployment of microclimate sensors in museums where long-term temperature and relative humidity observations were available (here, the Rosenborg Castle, Copenhagen, Denmark). Different statistical tools such as box-and-whisker plots, principal component analysis (PCA) and cluster analysis (CA) were used to identify microclimate patterns, i.e., similarities of indoor air conditions among rooms. Box-and-whisker plots allowed us to clearly identify one microclimate pattern in two adjoining rooms located in the basement. Multivariate methods (PCA and CA) enabled us to identify further microclimate patterns by grouping not only adjoining rooms but also rooms located on different floors. Based on these outcomes, new configurations about the deployment of sensors were proposed aimed at avoiding redundant sensors and collecting microclimate observations in other sensitive locations of this museum.


Asunto(s)
Microclima , Museos , Clima , Humedad , Temperatura
5.
Sensors (Basel) ; 22(2)2022 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-35062573

RESUMEN

The environmental microclimatic characteristics are often subject to fluctuations of considerable importance, which can cause irreparable damage to art works. We explored the applicability of Artificial Intelligence (AI) techniques to the Cultural Heritage area, with the aim of predicting short-term microclimatic values based on data collected at Rosenborg Castle (Copenhagen), housing the Royal Danish Collection. Specifically, this study applied the NAR (Nonlinear Autoregressive) and NARX (Nonlinear Autoregressive with Exogenous) models to the Rosenborg microclimate time series. Even if the two models were applied to small datasets, they have shown a good adaptive capacity predicting short-time future values. This work explores the use of AI in very short forecasting of microclimate variables in museums as a potential tool for decision-support systems to limit the climate-induced damages of artworks within the scope of their preventive conservation. The proposed model could be a useful support tool for the management of the museums.


Asunto(s)
Inteligencia Artificial , Museos , Predicción , Microclima , Redes Neurales de la Computación , Temperatura
6.
Sensors (Basel) ; 20(11)2020 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-32532073

RESUMEN

The peculiar microclimate inside cultural hypogeal sites needs to be carefully investigated. This study presents a methodology that aimed at providing a user-friendly assessment of the frequently occurring hazards in such sites. A Risk Index was specifically defined as the percentage of time for which the hygrothermal values lie in ranges that are considered to be hazardous for conservation. An environmental monitoring campaign that was conducted over the past ten years inside the Mithraeum of the Baths of Caracalla (Rome) allowed for us to study the deterioration before and after a maintenance intervention. The general microclimate assessment and the specific conservation risk assessment were both carried out. The former made it possible to investigate the influence of the outdoor weather conditions on the indoor climate and estimate condensation and evaporation responsible for salts crystallisation/dissolution and bio-colonisation. The latter took hygrothermal conditions that were close to wall surfaces to analyse the data distribution on diagrams with critical curves of deliquescence salts, mould germination, and growth. The intervention mitigated the risk of efflorescence thanks to reduced evaporation, while promoting the risk of bioproliferation due to increased condensation. The Risk Index provided a quantitative measure of the individual risks and their synergism towards a more comprehensive understanding of the microclimate-induced risks.

7.
Environ Sci Pollut Res Int ; 25(29): 28787-28797, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-29700753

RESUMEN

For the first time, the cluster analysis (k-means) has been applied on long time series of temperature and relative humidity measurements to identify the thermo-hygrometric features in a museum. Based on ASHRAE (2011) classification, 84% of time all rooms in the Napoleonic Museum in Rome (case study) were found in the class of control B. This result was obtained by analyzing all recorded data in 10 rooms of the museum as well as using the cluster aggregation. The use of objective-oriented methodology allows to achieve an acceptable knowledge of the microclimate in case of multi-room buildings, reducing computations with large amounts of collected data and time-consuming in redundant elaborations. The cluster analysis enables to reduce the number of the sensors in microclimate monitoring programs within museums, provided that the representativeness of the instrument location is known, and professional conservators have assessed that the artifacts are well preserved.


Asunto(s)
Contaminación del Aire Interior/análisis , Monitoreo del Ambiente/métodos , Microclima , Museos/normas , Análisis por Conglomerados , Monitoreo del Ambiente/estadística & datos numéricos , Humedad , Ciudad de Roma , Temperatura
8.
Sensors (Basel) ; 17(9)2017 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-28892016

RESUMEN

Monitoring the air particulate concentration both outdoors and indoors is becoming a more relevant issue in the past few decades. An innovative, fully automatic, monitoring system called CleAir is presented. Such a system wants to go beyond the traditional technique (gravimetric analysis), allowing for a double monitoring approach: the traditional gravimetric analysis as well as the optical spectroscopic analysis of the scattering on the same filters in steady-state conditions. The experimental data are interpreted in terms of light percolation through highly scattering matter by means of the stretched exponential evolution. CleAir has been applied to investigate the daily distribution of particulate matter within the Napoleonic Museum in Rome as a test case.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA