Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
1.
J Neurochem ; 160(2): 234-255, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34816431

RESUMEN

The nervous system monitors the environment to maintain homeostasis, which can be affected by stressful conditions. Using mammalian models of chronic stress, we previously observed altered brain levels of GPM6A, a protein involved in neuronal morphology. However, GPM6A's role in systemic stress responses remains unresolved. The nematode Caenorhabditis elegans expresses a GPM6A ortholog, the neuronal membrane glycoprotein 1 (NMGP-1). Because of the shared features between nematode and mammalian nervous systems and the vast genetic tools available in C. elegans, we used the worm to elucidate the role of GPM6A in the stress response. We first identified nmgp-1 expression in different amphid and phasmid neurons. To understand the nmgp-1 role, we characterized the behavior of nmgp-1(RNAi) animals and two nmgp-1 mutant alleles. Compared to control animals, mutant and RNAi-treated worms exhibited increased recovery time from the stress-resistant dauer stage, altered SDS chemosensation and reduced egg-laying rate resulting in egg retention (bag-of-worms phenotype). Silencing of nmgp-1 expression induced morphological abnormalities in the ASJ sensory neurons, partly responsible for dauer exit. These results indicate that nmgp-1 is required for neuronal morphology and for behaviors associated with chemosensation. Finally, we propose nmgp-1 mutants as a tool to screen drugs for human nervous system pathologies.


Asunto(s)
Adaptación Fisiológica/fisiología , Conducta Animal/fisiología , Caenorhabditis elegans/fisiología , Glicoproteínas de Membrana/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Animales , Proteínas de Caenorhabditis elegans/metabolismo , Femenino
2.
Artículo en Inglés | MEDLINE | ID: mdl-32848694

RESUMEN

Nowadays, great efforts are made to gain insight into the molecular mechanisms that underlie structural neuronal plasticity. Moreover, the identification of signaling pathways involved in the development of psychiatric disorders aids the screening of possible therapeutic targets. Genetic variations or alterations in GPM6A expression are linked to neurological disorders such as schizophrenia, depression, and Alzheimer's disease. GPM6A encodes the neuronal surface glycoprotein M6a that promotes filopodia/spine, dendrite, and synapse formation by unknown mechanisms. A substantial body of evidence suggests that the extracellular loops of M6a command its function. However, the proteins that associate with them and that modulate neuronal plasticity have not been determined yet. To address this question, we generated a chimera protein that only contains the extracellular loops of M6a and performed a co-immunoprecipitation with rat hippocampus samples followed by TMT/MS. Here, we report 72 proteins, which are good candidates to interact with M6a's extracellular loops and modify its function. Gene ontology (GO) analysis showed that 63% of the potential M6a's interactor proteins belong to the category "synapse," at both sides of the synaptic cleft, "neuron projections" (51%) and "presynapse" (49%). In this sense, we showed that endogenous M6a interacts with piccolo, synaptic vesicle protein 2B, and synapsin 1 in mature cultured hippocampal neurons. Interestingly, about 28% of the proteins left were related to the "myelin sheath" annotation, suggesting that M6a could interact with proteins at the surface of oligodendrocytes. Indeed, we demonstrated the (cis and trans) interaction between M6a and proteolipid protein (PLP) in neuroblastoma N2a cells. Finally, the 72 proteins were subjected to disease-associated genes and variants screening by DisGeNET. Apart from the diseases that have already been associated with M6a, most of the proteins are also involved in "autistic disorder," "epilepsy," and "seizures" increasing the spectrum of disorders in which M6a could play a role. Data are available via ProteomeXchange with identifier PXD017347.

3.
Front Mol Neurosci ; 11: 314, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30233315

RESUMEN

Neuronal membrane glycoprotein M6a (Gpm6a) is a protein with four transmembrane regions and the N- and the C-ends facing the cytosol. It functions in processes of neuronal development, outgrowth of neurites, and formation of filopodia, spines, and synapsis. Molecular mechanisms by which Gpm6a acts in these processes are not fully comprehended. Structural similarities of Gpm6a with tetraspanins led us to hypothesize that, similarly to tetraspanins, the cytoplasmic tails function as connections with cytoskeletal and/or signaling proteins. Here, we demonstrate that the C- but not the N-terminal cytosolic end of Gpm6a is required for the formation of filopodia by Gpm6a in cultured neurons from rat hippocampus and in neuroblastoma cells N2a. Further immunofluorescence microcopy and flow cytometry analysis show that deletion of neither the N- nor the C-terminal intracellular domains interferes with the recognition of Gpm6a by the function-blocking antibody directed against the extracellular part of Gpm6a. Expression levels of both truncation mutants were not affected but we observed decrease in the amount of both truncated proteins on cell surface suggesting that the incapacity of the Gpm6a lacking C-terminus to induce filopodium formation is not due to the lower amount of Gpm6a on cell surface. Following colocalization assays shows that deletion of the C- but not the N-terminus diminishes the association of Gpm6a with clathrin implying involvement of clathrin-mediated trafficking events. Next, using comprehensive alanine scanning mutagenesis of the C-terminus we identify K250, K255, and E258 as the key residues for the formation of filopodia by Gpm6a. Substitution of these charged residues with alanine also diminishes the amount of Gpm6a on cell surface and in case of K255 and E258 leads to the lower amount of total expressed protein. Subsequent bioinformatic analysis of Gpm6a amino acid sequence reveals that highly conserved and functional residues cluster preferentially within the C- and not within the N-terminus and that K250, K255, and E258 are predicted as part of sorting signals of transmembrane proteins. Altogether, our results provide evidence that filopodium outgrowth induced by Gpm6a requires functionally critical residues within the C-terminal cytoplasmic tail.

4.
Front Mol Neurosci ; 10: 296, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28979185

RESUMEN

Single point mutations or variations in the expression of the gene encoding the neuronal glycoprotein M6a have been associated with psychiatric disorders such as Alzheimer's disease, depression and schizophrenia. In cultured neurons, M6a positively contributes to neurite extension, axon guidance, filopodia/spine outgrowth, and synapse formation. The endocytic processes of neuronal membrane proteins are linked to the differentiation, growth, signaling and plasticity of neurons. However, the roles of M6a and the precise mechanisms through which M6a internalizes and recycles back to the neuronal membrane are unknown. Here, by using a controlled in vitro assay, we showed that if 30-40% of M6a is endocytosed, the number of synapses in hippocampal neurons decreases. When re-establishing the levels of M6a at the cell surface, the number of synapses returned to normal values. M6a internalization involves clathrin-coated pits, probably by association between the adaptor protein 2 and the 251YEDI254 "tyrosine-based" motif located within the C-tail of M6a. Upon endocytosis, M6a is sorted to early endosome antigen 1- and Rab5-positive endosomes and then sorted back to the cell surface via Rab11-positive endosomes or to degradation via Rab7 and, finally LAMP-1-positive endosomes. Our results demonstrated that the levels of M6a at the cell surface modified the formation/maintenance of synapses, without altering the protein levels of synaptophysin or N-methyl-D-aspartate receptor type-1. This novel mechanism might be relevant during neuronal development, pruning and/or many of the neurological disorders in which the number of synapses is affected.

5.
Sci Rep ; 7(1): 9788, 2017 08 29.
Artículo en Inglés | MEDLINE | ID: mdl-28851962

RESUMEN

Membrane neuronal glycoprotein M6a is highly expressed in the brain and contributes to neural plasticity promoting neurite growth and spine and synapse formation. We have previously showed that chronic stressors alter hippocampal M6a mRNA levels in rodents and tree shrews. We now show that M6a glycoprotein can be detected in mouse blood. M6a is a transmembrane glycoprotein and, as such, unlikely to be free in blood. Here we demonstrate that, in blood, M6a is transported in extracellular vesicles (EVs). It is also shown that M6a-containing EVs are delivered from cultured primary neurons as well as from M6a-transfected COS-7 cells. Released EVs containing M6a can be incorporated into COS-7 cells changing its phenotype through formation of membrane protrusions. Thus, M6a-containing EVs might contribute to maintain cellular plasticity. M6a presence in blood was used to monitor stress effects. Chronic restraint stress modulated M6a protein level in a sex dependent manner. Analysis of individual animals indicated that M6a level variations depend on the stressor applied. The response to stressors in blood makes M6a amenable to further studies in the stress disorder field.


Asunto(s)
Vesículas Extracelulares/metabolismo , Glicoproteínas de Membrana/sangre , Proteínas del Tejido Nervioso/sangre , Estrés Fisiológico , Animales , Transporte Biológico , Biomarcadores , Células COS , Chlorocebus aethiops , Vesículas Extracelulares/ultraestructura , Femenino , Técnica del Anticuerpo Fluorescente , Hipocampo/metabolismo , Masculino , Glicoproteínas de Membrana/líquido cefalorraquídeo , Glicoproteínas de Membrana/genética , Ratones , Proteínas del Tejido Nervioso/líquido cefalorraquídeo , Proteínas del Tejido Nervioso/genética , Neuronas/metabolismo , Factores Sexuales
6.
Mol Cell Neurosci ; 77: 95-104, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27793698

RESUMEN

Neuronal glycoprotein M6a belongs to the tetraspan proteolipid protein (PLP) family. Mutations in GPM6A gene have been related to mental disorders like schizophrenia, bipolar disorders and claustrophobia. M6a is expressed mainly in neuronal cells of the central nervous system and it has been extensively related to neuronal plasticity. M6a induces neuritogenesis and axon/filopodium outgrowth; however its mechanism of action is still unresolved. We recently reported that the integrity of the transmembrane domains (TMDs) 2 and 4 are critical for M6a filopodia induction. There is also experimental data suggesting that M6a might be involved in synaptogenesis. In this regard, we have previously determined that M6a is involved in filopodia motility, a process that is described in the first step of the filopodial model for synaptogenesis. In this work we analyzed the possible involvement of M6a in synaptogenesis and spinogenesis, and evaluated the effect of two non-synonymous SNPs present in the coding region of TMD2-GPM6A in these processes. The results showed that endogenous M6a colocalized with both, pre-synaptic (synaptophysin) and post-synaptic (NMDA-R1), markers along of neuronal soma and dendrites. M6a-overexpressing neurons displayed an increased number of synaptophysin and NMDA-R1 puncta and, also, an increased number of colocalization puncta between both markers. Conversely, the number of synaptic puncta markers in neurons expressing nsSNP variants was similar to those of control neurons. Overexpression of M6a is accompanied by an increase in spine density, particularly in mature spines, as compared with neurons expressing mGFP or GPM6A nsSNP variants. Taken together, these results suggest that M6a contributes positively to spine and, likely, synapse formation.


Asunto(s)
Espinas Dendríticas/metabolismo , Glicoproteínas de Membrana/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Neurogénesis , Sinapsis/metabolismo , Animales , Femenino , Hipocampo/citología , Hipocampo/embriología , Hipocampo/metabolismo , Glicoproteínas de Membrana/genética , Proteínas del Tejido Nervioso/genética , Ratas , Ratas Sprague-Dawley , Receptores de N-Metil-D-Aspartato/metabolismo , Sinaptofisina/metabolismo
7.
J Neurochem ; 137(1): 46-61, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26809475

RESUMEN

Stress-responsive neuronal membrane glycoprotein M6a (Gpm6a) functions in neurite extension, filopodium and spine formation and synaptogenesis. The mechanisms of Gpm6a action in these processes are incompletely understood. Previously, we identified the actin regulator coronin-1a (Coro1a) as a putative Gpm6a interacting partner. Here, we used co-immunoprecipitation assays with the anti-Coro1a antibody to show that Coro1a associates with Gpm6a in rat hippocampal neurons. By immunofluorescence microscopy, we demonstrated that in hippocampal neurons Coro1a localizes in F-actin-enriched regions and some of Coro1a spots co-localize with Gpm6a labeling. Notably, the over-expression of a dominant-negative form of Coro1a as well as its down-regulation by siRNA interfered with Gpm6a-induced filopodium formation. Coro1a is known to regulate the plasma membrane translocation and activation of small GTPase Rac1. We show that Coro1a co-immunoprecipitates with Rac1 together with Gpm6a. Pharmacological inhibition of Rac1 resulted in a significant decrease in filopodium formation by Gpm6a. The same was observed upon the co-expression of Gpm6a with the inactive GDP-bound form of Rac1. In this case, the elevated membrane recruitment of GDP-bound Rac1 was detected as well. Moreover, the kinase activity of the p21-activated kinase 1 (Pak1), a main downstream effector of Rac1 that acts downstream of Coro1a, was required for Gpm6a-induced filopodium formation. Taken together, our results provide evidence that a signaling pathway including Coro1a, Rac1, and Pak1 facilitates Gpm6a-induced filopodium formation. Formation of filopodia by membrane glycoprotein M6a (Gpm6a) requires actin regulator coronin-1a (Coro1a), known to regulate plasma membrane localization and activation of Rac1 and its downstream effector Pak1. Coro1a associates with Gpm6a. Blockage of Coro1a, Rac1, or Pak1 interferes with Gpm6a-induced filopodium formation. Moreover, Gpm6a facilitates Rac1 membrane recruitment. Altogether, a mechanistic insight into the process of Gpm6a-induced neuronal filopodium formation is provided.


Asunto(s)
Glicoproteínas de Membrana/fisiología , Proteínas de Microfilamentos/fisiología , Proteínas del Tejido Nervioso/fisiología , Neuronas/ultraestructura , Seudópodos/fisiología , Quinasas p21 Activadas/fisiología , Proteína de Unión al GTP rac1/fisiología , Actinas/análisis , Animales , Células Cultivadas , Regulación hacia Abajo , Genes Reporteros , Hipocampo/citología , Proteínas de Microfilamentos/genética , Proteínas del Tejido Nervioso/antagonistas & inhibidores , Biogénesis de Organelos , Cultivo Primario de Células , ARN Interferente Pequeño/genética , Ratas , Ratas Sprague-Dawley , Transducción de Señal/efectos de los fármacos , Transducción de Señal/fisiología , Proteína de Unión al GTP rac1/antagonistas & inhibidores
8.
J Neurochem ; 134(3): 499-512, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25940868

RESUMEN

Membrane glycoprotein M6a, which belongs to the tetraspan proteolipid protein family, promotes structural plasticity in neurons and cell lines by unknown mechanisms. This glycoprotein is encoded by Gpm6a, a stress-regulated gene. The hippocampus of animals chronically stressed by either psychosocial or physical stressors shows decreased M6a expression. Stressed Gpm6a-null mice develop a claustrophobia-like phenotype. In humans, de novo duplication of GPM6A results in learning/behavioral abnormalities, and two single-nucleotide polymorphisms (SNPs) in the non-coding region are linked to mood disorders. Here, we studied M6a dimerization in neuronal membranes and its functional relevance. We showed that the self-interaction of M6a transmembrane domains (TMDs) might be driving M6a dimerization, which is required to induce filopodia formation. Glycine mutants located in TMD2 and TMD4 of M6a affected its dimerization, thus preventing M6a-induced filopodia formation in neurons. In silico analysis of three non-synonymous SNPs located in the coding region of TMDs suggested that these mutations induce protein instability. Indeed, these SNPs prevented M6a from being functional in neurons, owing to decreased stability, dimerization or improper folding. Interestingly, SNP3 (W141R), which caused endoplasmic reticulum retention, is equivalent to that mutated in PLP1, W161L, which causes demyelinating Pelizaeus-Merzbacher disease. In this work we analyzed the functional contribution of transmembrane domains (TMDs) of the neuronal membrane glycoprotein M6a. We determined that certain glycines present in TMD2 and TMD4 are critical for filopodia induction in neurons. In addition, three nsSNPs located in the coding region of TMD2 and TMD3 of GPM6A impair M6a function by affecting its stability, folding and dimer formation.


Asunto(s)
Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Neuronas/metabolismo , Neuronas/ultraestructura , Secuencia de Aminoácidos , Animales , Ensayo de Inmunoadsorción Enzimática , Femenino , Immunoblotting , Inmunohistoquímica , Glicoproteínas de Membrana/química , Datos de Secuencia Molecular , Proteínas del Tejido Nervioso/química , Polimorfismo de Nucleótido Simple , Estructura Cuaternaria de Proteína , Estructura Terciaria de Proteína , Ratas , Ratas Sprague-Dawley
9.
Mol Cell Proteomics ; 14(7): 1871-84, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25922409

RESUMEN

Complete characterization of antibody specificities associated to natural infections is expected to provide a rich source of serologic biomarkers with potential applications in molecular diagnosis, follow-up of chemotherapeutic treatments, and prioritization of targets for vaccine development. Here, we developed a highly-multiplexed platform based on next-generation high-density peptide microarrays to map these specificities in Chagas Disease, an exemplar of a human infectious disease caused by the protozoan Trypanosoma cruzi. We designed a high-density peptide microarray containing more than 175,000 overlapping 15 mer peptides derived from T. cruzi proteins. Peptides were synthesized in situ on microarray slides, spanning the complete length of 457 parasite proteins with fully overlapped 15 mers (1 residue shift). Screening of these slides with antibodies purified from infected patients and healthy donors demonstrated both a high technical reproducibility as well as epitope mapping consistency when compared with earlier low-throughput technologies. Using a conservative signal threshold to classify positive (reactive) peptides we identified 2,031 disease-specific peptides and 97 novel parasite antigens, effectively doubling the number of known antigens and providing a 10-fold increase in the number of fine mapped antigenic determinants for this disease. Finally, further analysis of the chip data showed that optimizing the amount of sequence overlap of displayed peptides can increase the protein space covered in a single chip by at least ∼ threefold without sacrificing sensitivity. In conclusion, we show the power of high-density peptide chips for the discovery of pathogen-specific linear B-cell epitopes from clinical samples, thus setting the stage for high-throughput biomarker discovery screenings and proteome-wide studies of immune responses against pathogens.


Asunto(s)
Enfermedad de Chagas/inmunología , Mapeo Epitopo/métodos , Epítopos de Linfocito B/inmunología , Ensayos Analíticos de Alto Rendimiento/métodos , Péptidos/metabolismo , Análisis por Matrices de Proteínas/métodos , Proteómica/métodos , Antígenos de Protozoos/inmunología , Linfocitos B/inmunología , Bases de Datos de Proteínas , Ensayo de Inmunoadsorción Enzimática , Humanos , Reproducibilidad de los Resultados
10.
J Neurosci Res ; 93(2): 215-29, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25242528

RESUMEN

Neuronal glycoprotein M6a is involved in neuronal plasticity, promoting neurite and filopodia outgrowth and, likely, synaptogenesis. Polymorphisms in the human M6a gene GPM6A have recently been associated with mental illnesses such as schizophrenia, bipolar disorders, and claustrophobia. Nevertheless, the molecular bases underlying these observations remain unknown. We have previously documented that, to induce filopodia formation, M6a depends on the association of membrane lipid microdomains and the activation of Src and mitogen-activated protein kinase kinases. Here, in silico analysis of the phosphorylation of tyrosine 251 (Y251) at the C-terminus of M6a showed that it could be a target of Src kinases. We examined whether phosphorylation of M6a at Y251 affects neurite and filopodia outgrowth and the targets involved in its signal propagation. This work provides evidence that the Src kinase family and the phosphatidylinositide 3-kinase (PI3K), but not Ras, participate in M6a signal cascade leading to neurite/filopodia outgrowth in hippocampal neurons and murine neuroblastoma N2a cells. Phosphorylation of M6a at Y251 is essential only for neurite outgrowth by the PI3K/AKT-mediated pathway and, moreover, rescues the inhibition caused by selective Src inhibitor and external M6a monoclonal antibody treatment. Thus, we suggest that phosphorylation of M6a at Y251 is critical for a specific stage of neuronal development and triggers redundant signaling pathways leading to neurite extension.


Asunto(s)
Glicoproteínas de Membrana/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Neuritas/fisiología , Neuronas/citología , Neuronas/metabolismo , Tirosina/metabolismo , Animales , Línea Celular Transformada , Cromonas/farmacología , Embrión de Mamíferos , Inhibidores Enzimáticos/farmacología , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Hipocampo/citología , Técnicas In Vitro , Masculino , Glicoproteínas de Membrana/química , Glicoproteínas de Membrana/genética , Ratones , Morfolinas/farmacología , Mutación/genética , Proteínas del Tejido Nervioso/química , Proteínas del Tejido Nervioso/genética , Neuronas/efectos de los fármacos , Técnicas de Cultivo de Órganos , Fosfatidilinositol 3-Quinasas/metabolismo , Fosforilación , Seudópodos/fisiología , Ratas Sprague-Dawley , Transducción de Señal/efectos de los fármacos
11.
Epigenetics ; 9(1): 152-60, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23959066

RESUMEN

Prenatal stress (PS) exerts strong impact on fetal brain development and on adult offspring brain functions. Previous work demonstrated that chronic stress alters the mRNA expression of GPM6A, a neuronal glycoprotein involved in filopodium extension. In this work, we analyzed the effect of PS on gpm6a expression and the epigenetic mechanisms involved. Pregnant Wistar rats received restraint stress during the last week of gestation. Male offspring were sacrificed on postnatal days 28 and 60. Hippocampus and prefrontal cortex samples were analyzed for gene expression (qPCR for mRNAs and microRNAs), methylation status (bisulfite conversion) and protein levels. Hippocampal neurons in culture were used to analyze microRNA overexpression effects. Prenatal stress induced changes in gpm6a levels in both tissues and at both ages analyzed, indicating a persistent effect. Two CpG islands in the gpm6a gene were identified. Variations in the methylation pattern at three specific CpGs were found in hippocampus, but not in PFC samples from PS offspring. microRNAs predicted to target gpm6a were identified in silico. qPCR measurements showed that PS modified the expression of several microRNAs in both tissues, being microRNA-133b the most significantly altered. Further studies overexpressing this microRNA in neuronal cultures showed a reduction in gmp6a mRNA and protein level. Moreover filopodium density was also reduced, suggesting that GPM6A function was affected. Gestational stress affected gpm6a gene expression in offspring likely through changes in methylation status and in posttranscriptional regulation by microRNAs. Thus, our findings propose gpm6a as a novel target for epigenetic regulation during prenatal stress.


Asunto(s)
Encéfalo/metabolismo , Epigénesis Genética , Glicoproteínas/metabolismo , Glicoproteínas de Membrana/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Efectos Tardíos de la Exposición Prenatal/metabolismo , Estrés Psicológico/metabolismo , Animales , Encéfalo/embriología , Células Cultivadas , Islas de CpG , Femenino , Glicoproteínas/genética , Hipocampo/embriología , Hipocampo/metabolismo , Masculino , Glicoproteínas de Membrana/genética , Metilación , MicroARNs/genética , MicroARNs/metabolismo , Proteínas del Tejido Nervioso/genética , Neuronas/metabolismo , Corteza Prefrontal/embriología , Corteza Prefrontal/metabolismo , Embarazo , Efectos Tardíos de la Exposición Prenatal/genética , Ratas Wistar , Estrés Psicológico/genética
12.
PeerJ ; 1: e118, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23904995

RESUMEN

In eukaryotic cells, a group of messenger ribonucleic acids (mRNAs) encoding functionally interrelated proteins together with the trans-acting factors that coordinately modulate their expression is termed a post-transcriptional regulon, due to their partial analogy to a prokaryotic polycistron. This mRNA clustering is organized by sequence-specific RNA-binding proteins (RBPs) that bind cis-regulatory elements in the noncoding regions of genes, and mediates the synchronized control of their fate. These recognition motifs are often characterized by conserved sequences and/or RNA structures, and it is likely that various classes of cis-elements remain undiscovered. Current evidence suggests that RNA regulons govern gene expression in trypanosomes, unicellular parasites which mainly use post-transcriptional mechanisms to control protein synthesis. In this study, we used motif discovery tools to test whether groups of functionally related trypanosomatid genes contain a common cis-regulatory element. We obtained conserved structured RNA motifs statistically enriched in the noncoding region of 38 out of 53 groups of metabolically related transcripts in comparison with a random control. These motifs have a hairpin loop structure, a preferred sense orientation and are located in close proximity to the open reading frames. We found that 15 out of these 38 groups represent unique motifs in which most 3'-UTR signature elements were group-specific. Two extensively studied Trypanosoma cruzi RBPs, TcUBP1 and TcRBP3 were found associated with a few candidate RNA regulons. Interestingly, 13 motifs showed a strong correlation with clusters of developmentally co-expressed genes and six RNA elements were enriched in gene clusters affected after hyperosmotic stress. Here we report a systematic genome-wide in silico screen to search for novel RNA-binding sites in transcripts, and describe an organized network of several coordinately regulated cohorts of mRNAs in T. cruzi. Moreover, we found that structured RNA elements are also conserved in other human pathogens. These results support a model of regulation of gene expression by multiple post-transcriptional regulons in trypanosomes.

13.
BMC Neurosci ; 13: 78, 2012 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-22762289

RESUMEN

BACKGROUND: Members of the proteolipid protein family, including the four-transmembrane glycoprotein M6a, are involved in neuronal plasticity in mammals. Results from our group previously demonstrated that M6, the only proteolipid protein expressed in Drosophila, localizes to the cell membrane in follicle cells. M6 loss triggers female sterility, which suggests a role for M6 in follicular cell remodeling. These results were the basis of the present study, which focused on the function and requirements of M6 in the fly nervous system. RESULTS: The present study identified two novel, tissue-regulated M6 isoforms with variable N- and C- termini, and showed that M6 is the functional fly ortholog of Gpm6a. In the adult brain, the protein was localized to several neuropils, such as the optic lobe, the central complex, and the mushroom bodies. Interestingly, although reduced M6 levels triggered a mild rough-eye phenotype, hypomorphic M6 mutants exhibited a defective response to light. CONCLUSIONS: Based on its ability to induce filopodium formation we propose that M6 is key in cell remodeling processes underlying visual system function. These results bring further insight into the role of M6/M6a in biological processes involving neuronal plasticity and behavior in flies and mammals.


Asunto(s)
Conducta Animal/fisiología , Ojo/metabolismo , Regulación de la Expresión Génica/fisiología , Glicoproteínas de Membrana/fisiología , Vías Visuales/metabolismo , Empalme Alternativo/genética , Animales , Animales Modificados Genéticamente , Línea Celular Tumoral , Clonación Molecular , Secuencia Conservada/genética , Drosophila , Proteínas de Drosophila/genética , Ojo/ultraestructura , Regulación de la Expresión Génica/genética , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Esperanza de Vida , Glicoproteínas de Membrana/genética , Microscopía Electrónica de Rastreo , Actividad Motora/genética , Mutación/genética , Neuroblastoma/patología , Neurópilo/metabolismo , Neurópilo/ultraestructura , Lóbulo Óptico de Animales no Mamíferos/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Seudópodos/metabolismo , ARN Mensajero/metabolismo , Transfección , Vías Visuales/ultraestructura
14.
Glycobiology ; 22(10): 1363-73, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22653661

RESUMEN

The trans-sialidase of Trypanosoma cruzi (TcTS) catalyzes the transfer of sialic acid from host glycoconjugates to terminal ß-galactopyranosides in the mucins of the parasite. During infection, the enzyme is actively shed by the parasite to the bloodstream inducing hematological alterations. Lactitol prevents cell apoptosis caused by the TcTS, although it is rapidly eliminated from the circulatory system. Linear polyethyleneglycol (PEG) conjugates of lactose analogs were prepared but their clearance from blood was still quite fast. With the aim of improving their circulating half-lives in vivo, we now synthesized covalent conjugates of eight-arm PEG. The star-shape of these conjugates allows an increase in the molecular weight together with the loading of the active sugar. Two approaches were used for PEGylation of disaccharide derivatives containing ß-D-Galp as the non-reducing unit. (1) Amide formation between benzyl ß-D-galactopyranosyl-(1→6)-2-amino-2-deoxy-α-D-glucopyranoside and a succinimide-activated PEG. (2) Conjugation of lactobionolactone with amino end-functionalized PEG. Two 8-arm PEG derivatives (20 and 40 kDa) were used for each sugar. Substitution of all arms was proved by (1)H nuclear magnetic resonance (NMR) spectroscopy. The bioavailability of the conjugates in mice plasma was considerably improved with respect to the 5 kDa linear PEG conjugates retaining their inhibitory properties.


Asunto(s)
Inhibidores Enzimáticos/farmacología , Glicoproteínas/antagonistas & inhibidores , Lactosa/farmacología , Neuraminidasa/antagonistas & inhibidores , Polietilenglicoles/química , Trypanosoma cruzi/enzimología , Disponibilidad Biológica , Relación Dosis-Respuesta a Droga , Inhibidores Enzimáticos/química , Glicoproteínas/metabolismo , Lactosa/análogos & derivados , Lactosa/química , Espectroscopía de Resonancia Magnética , Estructura Molecular , Neuraminidasa/metabolismo , Relación Estructura-Actividad
15.
J Biol Chem ; 287(23): 19058-69, 2012 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-22500021

RESUMEN

Trypanosoma cruzi, the agent of Chagas disease, does not seem to control gene expression through regulation of transcription initiation and makes use of post-transcriptional mechanisms. We report here a 43-nt U-rich RNA element located in the 3'-untranslated region (3'-UTR) of a large number of T. cruzi mRNAs that is important for mRNA abundance in the intracellular amastigote stage of the parasite. Whole genome scan analysis, differential display RT-PCR, Northern blot, and RT-PCR analyses were used to determine the transcript levels of more than 900 U-rich-containing mRNAs of large gene families as well as single and low copy number genes. Our results indicate that the 43-nt U-rich mRNA element is preferentially present in amastigotes. The cis-element of a protein kinase 3'-UTR but not its mutated version promoted the expression of the green fluorescent protein reporter gene in amastigotes. The regulatory cis-element, but not its mutated version, was also shown to interact with the trypanosome-specific RNA-binding protein (RBP) TcUBP1 but not with other related RBPs. Co-immunoprecipitation experiments of TcUBP1-containing ribonucleoprotein complexes formed in vivo validated the interaction with representative endogenous RNAs having the element. These results suggest that this 43-nt U-rich element together with other yet unidentified sequences might be involved in the modulation of abundance and/or translation of subsets of transcripts in the amastigote stage.


Asunto(s)
Regiones no Traducidas 3'/fisiología , Genoma de Protozoos/fisiología , ARN Protozoario/metabolismo , Proteínas de Unión al ARN/metabolismo , Trypanosoma cruzi/fisiología , ARN Protozoario/genética , Proteínas de Unión al ARN/genética
16.
J Biol Chem ; 286(51): 43959-43971, 2011 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-22039054

RESUMEN

The protist parasite Trypanosoma cruzi has evolved the ability to transit between completely different hosts and to replicate in adverse environments. In particular, the epimastigote form, the replicative stage inside the vector, is subjected to nutritional and osmotic stresses during its development. In this work, we describe the biochemical and global gene expression changes of epimastigotes under hyperosmotic conditions. Hyperosmotic stress resulted in cell shrinking within a few minutes. Depending on the medium osmolarity, this was followed by lack of volume recovery for at least 2 h or by slow recovery. Experiments with inhibitors, or with cells in which an aquaporin gene (TcAQP1) was knocked down or overexpressed, revealed its importance for the cellular response to hyperosmotic stress. Furthermore, the adaptation to this new environment was shown to involve the regulation of the polyphosphate polymerization state as well as changes in amino acid catabolism to generate compatible osmolytes. A genome-wide transcriptional analysis of stressed parasites revealed down-regulation of genes belonging to diverse functional categories and up-regulation of genes encoding trans-sialidase-like and ribosomal proteins. Several of these changes were confirmed by Northern blot analyses. Sequence analysis of the 3'UTRs of up- and down-regulated genes allowed the identification of conserved structural RNA motifs enriched in each group, suggesting that specific ribonucleoprotein complexes could be of great importance in the adaptation of this parasite to different environments through regulation of transcript abundance.


Asunto(s)
Aminoácidos/química , Acuaporinas/química , Regulación de la Expresión Génica , Polifosfatos/química , Trypanosoma cruzi/metabolismo , Animales , Membrana Celular/metabolismo , Regulación hacia Abajo , Expresión Génica , Microscopía Electrónica/métodos , Análisis de Secuencia por Matrices de Oligonucleótidos/métodos , Ósmosis , ARN Mensajero/metabolismo , Factores de Tiempo , Regulación hacia Arriba
17.
Essays Biochem ; 51: 31-46, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-22023440

RESUMEN

Trypanosomatids are protozoan micro-organisms that cause serious health problems in humans and domestic animals. In addition to their medical relevance, these pathogens have novel biological structures and processes. From nuclear DNA transcription to mRNA translation, trypanosomes use unusual mechanisms to control gene expression. For example, transcription by RNAPII (RNA polymerase II) is polycistronic, and only a few transcription initiation sites have been identified so far. The sequences present in the polycistronic units code for proteins having unrelated functions, that is, not involved in a similar metabolic pathway. Owing to these biological constraints, these micro-organisms regulate gene expression mostly by post-transcriptional events. Consequently, the function of proteins that recognize RNA elements preferentially at the 3' UTR (untranslated region) of transcripts is central. It was recently shown that mRNP (messenger ribonucleoprotein) complexes are organized within post-transcriptional operons to co-ordinately regulate gene expression of functionally linked transcripts. In the present chapter we will focus on particular characteristics of gene expression in the so-called TriTryp parasites: Trypanosoma cruzi, Trypanosoma brucei and Leishmania major.


Asunto(s)
Regulación de la Expresión Génica , Trypanosoma/genética , Regiones no Traducidas 3' , Animales , Cromatina/genética , ADN Protozoario , Genoma , ARN Polimerasa II/genética , ARN Polimerasa II/metabolismo , Procesamiento Postranscripcional del ARN , ARN Mensajero/metabolismo , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Ribonucleoproteínas/genética , Ribonucleoproteínas/metabolismo , Transcripción Genética
18.
Clin Vaccine Immunol ; 18(11): 1850-5, 2011 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-21880857

RESUMEN

Chagas' disease is caused by the protozoan parasite Trypanosoma cruzi and is one of the most important endemic problems in Latin America. Lately, it has also become a health concern in the United States and Europe. Currently, a diagnosis of Chagas' disease and the screening of blood supplies for antiparasite antibodies are achieved by conventional serological tests that show substantial variation in the reproducibility and reliability of their results. In addition, the specificity of these assays is curtailed by antigenic cross-reactivity with sera from patients affected by other endemic diseases, such as leishmaniasis. Here we used a highly sensitive chemiluminescent enzyme-linked immunosorbent assay (CL-ELISA) to evaluate a recombinant protein core of a mucin-like molecule (termed trypomastigote small surface antigen [TSSA]) for the detection of specific serum antibodies in a broad panel of human sera. The same samples were evaluated by CL-ELISA using as the antigen either a mixture of native T. cruzi trypomastigote mucins or an epimastigote extract and, for further comparison, by conventional serologic tests, such as an indirect hemagglutination assay and indirect immunofluorescence assay. TSSA showed ∼87% sensitivity among the seropositive Chagasic panel, a value which was increased up to >98% when only parasitologically positive samples were considered. More importantly, TSSA showed a significant increase in specificity (97.4%) compared to those of currently used assays, which averaged 80 to 90%. Overall, our data demonstrate that recombinant TSSA may be a useful antigen for the immunodiagnosis of Chagas' disease.


Asunto(s)
Anticuerpos Antiprotozoarios/sangre , Antígenos de Protozoos , Enfermedad de Chagas/diagnóstico , Trypanosoma cruzi/inmunología , Antígenos de Protozoos/genética , Ensayo de Inmunoadsorción Enzimática/métodos , Humanos , Proteínas Recombinantes/genética , Sensibilidad y Especificidad
19.
PLoS One ; 6(5): e19715, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21603606

RESUMEN

We had previously shown that the transmembrane glycoprotein M6a, a member of the proteolipid protein (PLP) family, regulates neurite/filopodium outgrowth, hence, M6a might be involved in neuronal remodeling and differentiation. In this work we focused on M6, the only PLP family member present in Drosophila, and ortholog to M6a. Unexpectedly, we found that decreased expression of M6 leads to female sterility. M6 is expressed in the membrane of the follicular epithelium in ovarioles throughout oogenesis. Phenotypes triggered by M6 downregulation in hypomorphic mutants included egg collapse and egg permeability, thus suggesting M6 involvement in eggshell biosynthesis. In addition, RNAi-mediated M6 knockdown targeted specifically to follicle cells induced an arrest of egg chamber development, revealing that M6 is essential in oogenesis. Interestingly, M6-associated phenotypes evidenced abnormal changes of the follicle cell shape and disrupted follicular epithelium in mid- and late-stage egg chambers. Therefore, we propose that M6 plays a role in follicular epithelium maintenance involving membrane cell remodeling during oogenesis in Drosophila.


Asunto(s)
Proteínas de Drosophila/fisiología , Proteínas de la Membrana/fisiología , Oogénesis , Animales , Drosophila , Epitelio , Femenino , Folículo Ovárico
20.
J Neurochem ; 119(3): 521-31, 2011 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-21426347

RESUMEN

A neuronal integral membrane glycoprotein M6a has been suggested to be involved in a number of biological processes, including neuronal remodeling and differentiation, trafficking of mu-opioid receptors, and Ca(2+) transportation. Moreover, pathological situations such as chronic stress in animals and depression in humans have been associated with alterations in M6a sequence and expression. The mechanism of action of M6a is essentially unknown. In this work, we analyze the relevance of M6a distribution in plasma membrane, namely its lipid microdomain targeting, for its biological function in filopodia formation. We demonstrate that M6a is localized in membrane microdomains compatible with lipid rafts in cultured rat hippocampal neurons. Removal of cholesterol from neuronal membranes with methyl-ß-cyclodextrin decreases M6a-induced filopodia formation, an effect that is reversed by the addition of cholesterol. Inhibition of Src kinases and MAPK prevents filopodia formation in M6a-over-expressing neurons. Src-deficient SYF cells over-expressing M6a fail to promote filopodia formation. Taken together, our findings reveal that the association of M6a with lipid rafts is important for its role in filopodia formation and Src and MAPK kinases participate in M6a signal propagation.


Asunto(s)
Colesterol/metabolismo , Glicoproteínas de Membrana/fisiología , Microdominios de Membrana/química , Microdominios de Membrana/fisiología , Proteínas del Tejido Nervioso/fisiología , Neuronas/citología , Seudópodos/química , Animales , Células COS , Células Cultivadas , Chlorocebus aethiops , Masculino , Glicoproteínas de Membrana/química , Glicoproteínas de Membrana/metabolismo , Microdominios de Membrana/metabolismo , Proteínas del Tejido Nervioso/química , Proteínas del Tejido Nervioso/metabolismo , Neuronas/química , Neuronas/metabolismo , Unión Proteica/fisiología , Seudópodos/metabolismo , Ratas , Ratas Sprague-Dawley
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...