Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 96
Filtrar
1.
SLAS Technol ; 29(5): 100195, 2024 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-39349243

RESUMEN

Polymerase chain reaction (PCR)-based assays were widely deployed during the SARS-CoV-2 pandemic for population-scale testing. High-throughput molecular diagnostic laboratories required a high degree of process automation to cope with huge testing demands, fast turnaround times, and quality requirements. However, process developers and optimizers often neglected the critical step of preparing a PCR Master Mix. The construction of PCR Master Mix depends on operator skill during the manual pipetting of reagents. Manual procedures introduce variation, inconsistency, wastage, and potentially risks data integrity. To address this, we developed a liquid-handler-based solution for automated, traceable, and compliant PCR Master Mix preparation. Here, we show that a fully automated PCR Master Mix protocol can replace manual pipetting, even in a diagnostic environment, without affecting accuracy or precision. Ultimately, this method eliminated operator-induced wastage and improved the consistency of the quality of results.

2.
Eur J Immunol ; 54(10): e2451190, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39072722

RESUMEN

Sepsis affects 25 million children per year globally, leading to 2.9 million deaths and substantial disability in survivors. Extensive characterization of interactions between the host and bacteria in children is required to design novel preventive and therapeutic strategies tailored to this age group. Vγ9Vδ2 T cells are the first T cells generated in humans. These cells are defined by the expression of Vγ9Vδ2 T-cell receptors (TCRs, using the TRGV9 and TRDV2 gene segments), which react strongly against the prototypical bacterial phosphoantigen HMBPP. We investigated this reactivity by analyzing the TCR δ (TRD) repertoire in the blood of 76 children (0-16 years) with blood culture-proven bacterial sepsis caused by HMBPP-positive Escherichia coli or by HMBPP-negative Staphylococcus aureus or by HMBPP-negative Streptococcus pneumoniae. Strikingly, we found that S. aureus, and to a lesser extent E. coli but not S. pneumoniae, shaped the TRDV2 repertoire in young children (<2 years) but not in older children or adults. This dichotomy was due to the selective expansion of a fetal TRDV2 repertoire. Thus, young children possess fetal-derived Vγ9Vδ2 T cells that are highly responsive toward specific bacterial pathogens.


Asunto(s)
Receptores de Antígenos de Linfocitos T gamma-delta , Sepsis , Staphylococcus aureus , Streptococcus pneumoniae , Humanos , Receptores de Antígenos de Linfocitos T gamma-delta/inmunología , Receptores de Antígenos de Linfocitos T gamma-delta/genética , Niño , Lactante , Preescolar , Adolescente , Sepsis/inmunología , Staphylococcus aureus/inmunología , Streptococcus pneumoniae/inmunología , Escherichia coli/inmunología , Masculino , Femenino , Recién Nacido , Factores de Edad , Infecciones por Escherichia coli/inmunología , Infecciones Estafilocócicas/inmunología
3.
In Vivo ; 38(3): 1049-1057, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38688639

RESUMEN

BACKGROUND/AIM: Acute and chronic kidney diseases are a major contributor to morbidity and mortality worldwide, with no specific treatments currently available for these. To enable understanding the pathophysiology of and testing novel treatments for acute and chronic kidney disease, a suitable in vivo model of kidney disease is essential. In this article, we describe two reliable rodent models (rats and mice) of efficacious kidney injury displaying acute to chronic kidney injury progression, which is also reversible through novel therapeutic strategies such as ischemic preconditioning (IPC). MATERIALS AND METHODS: We utilized adult male Lewis rats and adult male wildtype (C57BL/6) mice, performed a midline laparotomy, and induced warm ischemia to both kidneys by bilateral clamping of both renal vascular pedicles for a set time, to mimic the hypoxic etiology of disease commonly found in kidney injury. RESULTS: Bilateral ischemia reperfusion injury caused marked structural and functional kidney injury as exemplified by histology damage scores, serum creatinine levels, and kidney injury biomarker levels in both rodents. Furthermore, this effect displayed a dose-dependent response in the mouse model. CONCLUSION: These rodent models of bilateral kidney IRI are reliable, reproducible, and enable detailed mechanistic study of the underlying pathophysiology of both acute and chronic kidney disease. They have been carefully optimised for single operator use with a strong track record of training both surgically trained and surgically naïve operators.


Asunto(s)
Lesión Renal Aguda , Modelos Animales de Enfermedad , Riñón , Daño por Reperfusión , Animales , Daño por Reperfusión/patología , Ratones , Ratas , Masculino , Riñón/patología , Riñón/irrigación sanguínea , Lesión Renal Aguda/etiología , Lesión Renal Aguda/patología , Biomarcadores , Ratas Endogámicas Lew , Ratones Endogámicos C57BL , Precondicionamiento Isquémico/métodos , Creatinina/sangre
4.
RSC Pharm ; 1(1): 68-79, 2024 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-38646595

RESUMEN

The acute kidney injury (AKI) and dose-limiting nephrotoxicity, which occurs in 20-60% of patients following systemic administration of colistin, represents a challenge in the effective treatment of multi-drug resistant Gram-negative infections. To reduce clinical toxicity of colistin and improve targeting to infected/inflamed tissues, we previously developed dextrin-colistin conjugates, whereby colistin is designed to be released by amylase-triggered degradation of dextrin in infected and inflamed tissues, after passive targeting by the enhanced permeability and retention effect. Whilst it was evident in vitro that polymer conjugation can reduce toxicity and prolong plasma half-life, without significant reduction in antimicrobial activity of colistin, it was unclear how dextrin conjugation would alter cellular uptake and localisation of colistin in renal tubular cells in vivo. We discovered that dextrin conjugation effectively reduced colistin's toxicity towards human kidney proximal tubular epithelial cells (HK-2) in vitro, which was mirrored by significantly less cellular uptake of Oregon Green (OG)-labelled dextrin-colistin conjugate, when compared to colistin. Using live-cell confocal imaging, we revealed localisation of both, free and dextrin-bound colistin in endolysosome compartments of HK-2 and NRK-52E cells. Using a murine AKI model, we demonstrated dextrin-colistin conjugation dramatically diminishes both proximal tubular injury and renal accumulation of colistin. These findings reveal new insight into the mechanism by which dextrin conjugation can overcome colistin's renal toxicity and show the potential of polymer conjugation to improve the side effect profile of nephrotoxic drugs.

5.
J Biol Chem ; 300(5): 107244, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38556087

RESUMEN

Recent interest in the biology and function of peritoneal tissue resident macrophages (pMΦ) has led to a better understanding of their cellular origin, programming, and renewal. The programming of pMΦ is dependent on microenvironmental cues and tissue-specific transcription factors, including GATA6. However, the contribution of microRNAs remains poorly defined. We conducted a detailed analysis of the impact of GATA6 deficiency on microRNA expression in mouse pMΦ. Our data suggest that for many of the pMΦ, microRNA composition may be established during tissue specialization and that the effect of GATA6 knockout is largely unable to be rescued in the adult by exogenous GATA6. The data are consistent with GATA6 modulating the expression pattern of specific microRNAs, directly or indirectly, and including miR-146a, miR-223, and miR-203 established by the lineage-determining transcription factor PU.1, to achieve a differentiated pMΦ phenotype. Lastly, we showed a significant dysregulation of miR-708 in pMΦ in the absence of GATA6 during homeostasis and in response to LPS/IFN-γ stimulation. Overexpression of miR-708 in mouse pMΦ in vivo altered 167 mRNA species demonstrating functional downregulation of predicted targets, including cell immune responses and cell cycle regulation. In conclusion, we demonstrate dependence of the microRNA transcriptome on tissue-specific programming of tissue macrophages as exemplified by the role of GATA6 in pMΦ specialization.


Asunto(s)
Factor de Transcripción GATA6 , Macrófagos Peritoneales , MicroARNs , Transcriptoma , Animales , Ratones , Factor de Transcripción GATA6/metabolismo , Factor de Transcripción GATA6/genética , Regulación de la Expresión Génica , Lipopolisacáridos/farmacología , Macrófagos Peritoneales/metabolismo , Ratones Endogámicos C57BL , MicroARNs/genética , MicroARNs/metabolismo , Especificidad de Órganos , Proteínas Proto-Oncogénicas , Transactivadores/genética , Transactivadores/metabolismo
6.
Front Cell Infect Microbiol ; 13: 1285193, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38094743

RESUMEN

Bacterial infections and the concurrent inflammation have been associated with increased long-term cardiovascular (CV) risk. In patients receiving peritoneal dialysis (PD), bacterial peritonitis is a common occurrence, and each episode further increases late CV mortality risk. However, the underlying mechanism(s) remains to be elucidated before safe and efficient anti-inflammatory interventions can be developed. Damage-Associated Molecular Patterns (DAMPs) have been shown to contribute to the acute inflammatory response to infections, but a potential role for DAMPs in mediating long-term vascular inflammation and CV risk following infection resolution in PD, has not been investigated. We found that bacterial peritonitis in mice that resolved within 24h led to CV disease-promoting systemic and vascular immune-mediated inflammatory responses that were maintained up to 28 days. These included higher blood proportions of inflammatory leukocytes displaying increased adhesion molecule expression, higher plasma cytokines levels, and increased aortic inflammatory and atherosclerosis-associated gene expression. These effects were also observed in infected nephropathic mice and amplified in mice routinely exposed to PD fluids. A peritonitis episode resulted in elevated plasma levels of the DAMP Calprotectin, both in PD patients and mice, here the increase was maintained up to 28 days. In vitro, the ability of culture supernatants from infected cells to promote key inflammatory and atherosclerosis-associated cellular responses, such as monocyte chemotaxis, and foam cell formation, was Calprotectin-dependent. In vivo, Calprotectin blockade robustly inhibited the short and long-term peripheral and vascular consequences of peritonitis, thereby demonstrating that targeting of the DAMP Calprotectin is a promising therapeutic strategy to reduce the long-lasting vascular inflammatory aftermath of an infection, notably PD-associated peritonitis, ultimately lowering CV risk.


Asunto(s)
Aterosclerosis , Infecciones Bacterianas , Diálisis Peritoneal , Peritonitis , Humanos , Ratones , Animales , Diálisis Peritoneal/efectos adversos , Diálisis Peritoneal/métodos , Inflamación/complicaciones , Infecciones Bacterianas/complicaciones , Aterosclerosis/complicaciones
7.
Kidney Int Rep ; 8(12): 2546-2556, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38106605

RESUMEN

Introduction: We reported increased spleen tyrosine kinase (SYK) expression in kidney biopsies of patients with IgA nephropathy (IgAN) and that inhibition of SYK reduces inflammatory cytokines production from IgA stimulated mesangial cells. Methods: This study was a double-blind, randomized, placebo-controlled phase 2 trial of fostamatinib (an oral SYK inhibitor) in 76 patients with IgAN. Patients were randomized to receive placebo, fostamatinib at 100 mg or 150 mg twice daily for 24 weeks on top of maximum tolerated dose of renin-angiotensin system inhibitors. The primary end point was reduction of proteinuria. Secondary end points included change from baseline in estimated glomerular filtration rate (eGFR) and kidney histology. Results: Although we could not detect significant reduction in proteinuria with fostamatinib overall, in a predetermined subgroup analysis, there was a trend for dose-dependent reduction in median proteinuria (from baseline to 24 weeks by 14%, 27%, and 36% in the placebo, fostamatinib 100 mg, and 150 mg groups, respectively) in patients with baseline urinary protein-to-creatinine ratios (UPCR) more than 1000 mg/g. Kidney function (eGFR) remained stable in all groups. Fostamatinib was well-tolerated. Side effects included diarrhea, hypertension, and increased liver enzymes. Thirty-nine patients underwent repeat biopsy showing reductions in SYK staining associated with therapy at low dose (-1.5 vs. 1.7 SYK+ cells/glomerulus in the placebo group, P < 0.05). Conclusions: There was a trend toward reduction in proteinuria with fostamatinib in a predefined analysis of high risk patients with IgAN despite maximal care, as defined by baseline UPCR greater than 1000 mg/g. Further study may be warranted.

8.
BMC Nephrol ; 24(1): 310, 2023 10 25.
Artículo en Inglés | MEDLINE | ID: mdl-37880609

RESUMEN

Large placebo-controlled trials have demonstrated kidney and cardiovascular clinical benefits of SGLT-2 inhibitors. Data from the EMPA-KIDNEY and DELIVER trials and associated meta-analyses triggered an update to the UK Kidney Association Clinical Practice Guideline on Sodium-Glucose Co-transporter-2 (SGLT-2) Inhibition in Adults with Kidney Disease. We provide a summary of the full guideline and highlight the rationale for recent updates. The use of SGLT-2 inhibitors in people with specific medical conditions, including type 1 diabetes, kidney transplants, and people admitted to hospital with heart failure is also considered, along with Recommendations for future research and Recommendations for implementation. A full "lay" summary of the guidelines is provided as an appendix to ensure that these guidelines are accessible and understandable to people who are not medical professionals.


Asunto(s)
Diabetes Mellitus Tipo 2 , Enfermedades Renales , Inhibidores del Cotransportador de Sodio-Glucosa 2 , Adulto , Humanos , Glucemia , Hipoglucemiantes , Riñón , Inhibidores del Cotransportador de Sodio-Glucosa 2/uso terapéutico , Inhibidores del Cotransportador de Sodio-Glucosa 2/farmacología , Reino Unido
9.
Curr Opin Nephrol Hypertens ; 32(6): 515-521, 2023 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-37678380

RESUMEN

PURPOSE OF REVIEW: MicroRNAs (miRNAs) are emerging rapidly as a novel class of biomarkers of major organ disorders, including kidney diseases. However, current PCR-based detection methods are not amenable to development for high-throughput, cost-effective miRNA biomarker quantification. RECENT FINDINGS: MiRNA biomarkers show significant promise for diagnosis and prognosis of kidney diseases, including diabetic kidney disease, acute kidney injury, IgA nephropathy and delayed graft function following kidney transplantation. A variety of novel methods to detect miRNAs in liquid biopsies including urine, plasma and serum are being developed. As miRNAs are functional transcripts that regulate the expression of many protein coding genes, differences in miRNA profiles in disease also offer clues to underlying disease mechanisms. SUMMARY: Recent findings highlight the potential of miRNAs as biomarkers to detect and predict progression of kidney diseases. Developing in parallel, novel methods for miRNA detection will facilitate the integration of these biomarkers into rapid routine clinical testing and existing care pathways. Validated kidney disease biomarkers also hold promise to identify novel therapeutic tools and targets. VIDEO ABSTRACT: http://links.lww.com/CONH/A43.


Asunto(s)
Nefropatías Diabéticas , MicroARNs , Humanos , MicroARNs/genética , MicroARNs/metabolismo , Riñón/metabolismo , Nefropatías Diabéticas/metabolismo , Biomarcadores/metabolismo , Biopsia Líquida
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA