Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
1.
Nat Commun ; 14(1): 2836, 2023 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-37202395

RESUMEN

One of the key events in viral encephalitis is the ability of virus to enter the central nervous system (CNS). Several encephalitic viruses, including La Crosse Virus (LACV), primarily induce encephalitis in children, but not adults. This phenomenon is also observed in LACV mouse models, where the virus gains access to the CNS of weanling animals through vascular leakage of brain microvessels, likely through brain capillary endothelial cells (BCECs). To examine age and region-specific regulatory factors of vascular leakage, we used genome-wide transcriptomics and targeted siRNA screening to identify genes whose suppression affected viral pathogenesis in BCECs. Further analysis of two of these gene products, Connexin43 (Cx43/Gja1) and EphrinA2 (Efna2), showed a substantial effect on LACV pathogenesis. Induction of Cx43 by 4-phenylbutyric acid (4-PBA) inhibited neurological disease in weanling mice, while Efna2 deficiency increased disease in adult mice. Thus, we show that Efna2 and Cx43 expressed by BCECs are key mediators of LACV-induced neuroinvasion and neurological disease.


Asunto(s)
Encefalitis de California , Virus La Crosse , Animales , Ratones , Virus La Crosse/genética , Encefalitis de California/genética , Conexina 43 , Células Endoteliales , Factores de Edad
2.
Cell Death Differ ; 30(2): 589-604, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36624264

RESUMEN

Kinase signaling in the tiered activation of inflammasomes and associated pyroptosis is a prime therapeutic target for inflammatory diseases. While MAPKs subsume pivotal roles during inflammasome priming, specifically the MAP3K7/JNK1/NLRP3 licensing axis, their involvement in successive steps of inflammasome activation is poorly defined. Using live-cell MAPK biosensors to focus on the inflammasome triggering event allowed us to identify a subsequent process of biphasic JNK activation. We find that this biphasic post-trigger JNK signaling initially facilitates the mitochondrial reactive oxygen species generation needed to support core inflammasome formation, then supports the gasdermin-mediated cell permeation required for release of active IL-1ß from human macrophages. We further identify and characterize a xanthine oxidase-ROS activated MAP3K5/JNK2 substrate licensing complex as a novel regulator of the GSDMD mobilization which precedes pyroptosis. We show that inhibitors targeting this MAP3K5 cascade alleviate morbidity in mouse models of colitis and dampen both augmented IL-1ß release and cell permeation in monocytes derived from patients with gain-of-function inflammasomopathies.


Asunto(s)
Inflamasomas , Piroptosis , Animales , Humanos , Ratones , Inflamasomas/metabolismo , Interleucina-1beta/metabolismo , Macrófagos/metabolismo , Sistema de Señalización de MAP Quinasas , Proteína con Dominio Pirina 3 de la Familia NLR/genética , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Piroptosis/fisiología , Transducción de Señal
4.
Cell Rep ; 41(1): 111441, 2022 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-36179680

RESUMEN

Biologically active small molecules can impart modulatory effects, in some cases providing extended long-term memory. In a screen of biologically active small molecules for regulators of tumor necrosis factor (TNF) induction, we identify several compounds with the ability to induce training effects on human macrophages. Rutaecarpine shows acute and long-term modulation, enhancing lipopolysaccharide (LPS)-induced pro-inflammatory cytokine secretion and relieving LPS tolerance in human macrophages. Rutaecarpine inhibits ß-glucan-induced H3K4Me3 marks at the promoters of several pro-inflammatory cytokines, highlighting the potential of this molecule to modulate chromosomal topology. Syk kinase inhibitor (SYKi IV), another screen hit, promotes an enhanced response to LPS similar to that previously reported for ß-glucan-induced training. Macrophages trained with SYKi IV show a high degree of resistance to influenza A, multiple variants of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), and OC43 coronavirus infection, highlighting a potential application of this molecule and other SYKis as prophylactic treatments for viral susceptibility.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , beta-Glucanos , Citocinas , Humanos , Alcaloides Indólicos , Lipopolisacáridos , Macrófagos , Quinazolinonas , SARS-CoV-2 , Quinasa Syk , Factor de Necrosis Tumoral alfa
5.
Sci Data ; 9(1): 491, 2022 08 12.
Artículo en Inglés | MEDLINE | ID: mdl-35961990

RESUMEN

The Toll-like receptor (TLR) and chemotaxis pathways are key components of the innate immune system. Subtle variation in the concentration, timing, and molecular structure of the ligands are known to affect downstream signaling and the resulting immune response. Computational modeling and simulation at the molecular interaction level can be used to study complex biological pathways, but such simulations require protein concentration values as model parameters. Here we report the development and application of targeted mass spectrometry assays to measure the absolute abundance of proteins of the mouse macrophage Toll-like receptor 4 (TLR4) and chemotaxis pathways. Two peptides per protein were quantified, if possible. The protein abundance values ranged from 1,332 to 227,000,000 copies per cell. They moderately correlated with transcript abundance values from a previously published mouse macrophage RNA-seq dataset, and these two datasets were combined to make proteome-wide abundance estimates. The datasets produced during this investigation can be used for pathway modeling and simulation, as well as for other studies of the TLR and chemotaxis pathways.


Asunto(s)
Quimiotaxis , Macrófagos , Receptores Toll-Like , Animales , Ligandos , Macrófagos/metabolismo , Ratones , Transducción de Señal , Receptores Toll-Like/metabolismo
6.
RNA ; 28(9): 1263-1278, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35764396

RESUMEN

Measurement of gene expression at the single-cell level has advanced the study of transcriptional regulation programs in healthy and disease states. In particular, single-cell approaches have shed light on the high level of transcriptional heterogeneity of individual cells, both at baseline and in response to experimental or environmental perturbations. We have developed a method for high-content imaging (HCI)-based quantification of relative changes in transcript abundance at the single-cell level in human primary immune cells and have validated its performance under multiple experimental conditions to demonstrate its general applicability. This method, named hcHCR, combines the sensitivity of the hybridization chain reaction (HCR) for the visualization of RNA in single cells, with the speed, scalability, and reproducibility of HCI. We first tested eight cell attachment substrates for short-term culture of primary human B cells, T cells, monocytes, or neutrophils. We then miniaturized HCR in 384-well format and documented the ability of the method to detect changes in transcript abundance at the single-cell level in thousands of cells for each experimental condition by HCI. Furthermore, we demonstrated the feasibility of multiplexing gene expression measurements by simultaneously assaying the abundance of three transcripts per cell at baseline and in response to an experimental stimulus. Finally, we tested the robustness of the assay to technical and biological variation. We anticipate that hcHCR will be suitable for low- to medium-throughput chemical or functional genomics screens in primary human cells, with the possibility of performing screens on cells obtained from patients with a specific disease.


Asunto(s)
Regulación de la Expresión Génica , Genómica , Humanos , ARN Mensajero/genética , Reproducibilidad de los Resultados
7.
Bio Protoc ; 11(21): e4205, 2021 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-34859120

RESUMEN

The ability to identify the role of a particular gene within a system is dependent on control of the expression of that gene. In this protocol, we describe a method for stable, conditional expression of Nod-Like receptors (NLRs) in THP-1 cells using a lentiviral expression system. This system combines all the necessary components for tetracycline-inducible gene expression in a single lentivector with constitutive co-expression of a selection marker, which is an efficient means for controlling gene expression using a single viral infection of cells. This is done in a third generation lentiviral expression platform that improves the safety of lentiviruses and allows for greater gene expression than previous lentiviral platforms. The lentiviral expression plasmid is first engineered to contain the gene of interest driven by a TRE (tetracycline response element) promoter in a simple gateway cloning step and is then co-transfected into HEK293T cells, along with packaging and envelope plasmids to generate the virus. The virus is used to infect a cell type of interest at a low MOI so that the majority of the transduced cells contain a single viral integration. Infected cells are grown under selection, and viral integration is validated by qPCR. Gene expression in stably transduced cells is induced with doxycycline and validated by qPCR, immunoblot, and flow cytometry. This flexible lentiviral expression platform may be used for stable and robust induction of a gene of interest in a range of cells for multiple applications. Graphic abstract: Schematic overview of lentiviral transduction of THP-1 cells.

9.
Nature ; 597(7874): E1, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34373651

RESUMEN

A Correction to this paper has been published: https://doi.org/10.1038/s41586-021-03346-0.

10.
mSystems ; 6(4): e0030621, 2021 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-34342534

RESUMEN

The innate immune system is the body's first line of defense against pathogens and its protection against infectious diseases. On the surface of host myeloid cells, Toll-like receptor 4 (TLR4) senses lipopolysaccharide (LPS), the major outer membrane component of Gram-negative bacteria. Intracellularly, LPS is recognized by caspase 11 through the noncanonical inflammasome to induce pyroptosis-an inflammatory form of lytic cell death. While TLR4-mediated signaling perturbations result in secretion of cytokines and chemokines that help clear infection and facilitate adaptive immunity, caspase 11-mediated pyroptosis leads to the release of damage-associated molecular patterns and inflammatory mediators. Although the core signaling events and many associated proteins in the TLR4 signaling pathway are known, the complex signaling events and protein networks within the noncanonical inflammasome pathway remain obscure. Moreover, there is mounting evidence for pathogen-specific innate immune tuning. We characterized the major LPS structures from two different pathogens, modeled their binding to the surface receptors, systematically examined macrophage inflammatory responses to these LPS molecules, and surveyed the temporal differences in global protein secretion resulting from TLR4 and caspase 11 activation in macrophages using mass spectrometry (MS)-based quantitative proteomics. This integrated strategy, spanning functional activity assays, top-down structural elucidation of endotoxins, and secretome analysis of stimulated macrophages, allowed us to identify crucial differences in TLR4- and caspase 11-mediated protein secretion in response to two Gram-negative bacterial endotoxins. IMPORTANCE Macrophages and monocytes are innate immune cells playing an important role in orchestrating the initial innate immune response to bacterial infection and the tissue damage. This response is facilitated by specific receptors on the cell surface and intracellularly. One of the bacterial molecules recognized is a Gram-negative bacteria cell wall component, lipopolysaccharide (LPS). The structure of LPS differs between different species. We have characterized the innate immune responses to the LPS molecules from two bacteria, Escherichia coli and Bordetella pertussis, administered either extracellularly or intracellularly, whose structures we first determined. We observed marked differences in the temporal dynamics and amounts of proteins secreted by the innate immune cells stimulated by any of these molecules and routes. This suggests that there is specificity in the first line of response to different Gram-negative bacteria that can be explored to tailor specific therapeutic interventions.

11.
Trends Immunol ; 42(9): 807-823, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34334306

RESUMEN

Inflammation driven by the NLRP3 inflammasome in macrophages is an important contributor to chronic metabolic diseases that affect growing numbers of individuals. Many of these diseases involve the pathologic accumulation of endogenous lipids or their oxidation products, which can activate NLRP3. Other endogenous lipids, however, can inhibit the activation of NLRP3. The intracellular mechanisms by which these lipids modulate NLRP3 activity are now being identified. This review discusses emerging evidence suggesting that organelle stress, particularly involving mitochondria, lysosomes, and the endoplasmic reticulum, may be key in lipid-induced modification of NLRP3 inflammasome activity.


Asunto(s)
Inflamasomas , Proteína con Dominio Pirina 3 de la Familia NLR , Estrés del Retículo Endoplásmico , Humanos , Lípidos , Mitocondrias
12.
Sci Signal ; 14(694)2021 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-34344832

RESUMEN

Noncanonical inflammasome activation by cytosolic lipopolysaccharide (LPS) is a critical component of the host response to Gram-negative bacteria. Cytosolic LPS recognition in macrophages is preceded by a Toll-like receptor (TLR) priming signal required to induce transcription of inflammasome components and facilitate the metabolic reprograming that fuels the inflammatory response. Using a genome-scale arrayed siRNA screen to find inflammasome regulators in mouse macrophages, we identified the mitochondrial enzyme nucleoside diphosphate kinase D (NDPK-D) as a regulator of both noncanonical and canonical inflammasomes. NDPK-D was required for both mitochondrial DNA synthesis and cardiolipin exposure on the mitochondrial surface in response to inflammasome priming signals mediated by TLRs, and macrophages deficient in NDPK-D had multiple defects in LPS-induced inflammasome activation. In addition, NDPK-D was required for the recruitment of TNF receptor-associated factor 6 (TRAF6) to mitochondria, which was critical for reactive oxygen species (ROS) production and the metabolic reprogramming that supported the TLR-induced gene program. NDPK-D knockout mice were protected from LPS-induced shock, consistent with decreased ROS production and attenuated glycolytic commitment during priming. Our findings suggest that, in response to microbial challenge, NDPK-D-dependent TRAF6 mitochondrial recruitment triggers an energetic fitness checkpoint required to engage and maintain the transcriptional program necessary for inflammasome activation.


Asunto(s)
Inflamasomas , Nucleósido Difosfato Quinasa D , Animales , Inflamasomas/genética , Inflamasomas/metabolismo , Lipopolisacáridos/metabolismo , Macrófagos/metabolismo , Ratones , Mitocondrias/genética , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Nucleósido Difosfato Quinasa D/metabolismo , Especies Reactivas de Oxígeno/metabolismo
13.
J Neuroinflammation ; 18(1): 125, 2021 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-34082753

RESUMEN

BACKGROUND: A key factor in the development of viral encephalitis is a virus crossing the blood-brain barrier (BBB). We have previously shown that age-related susceptibility of mice to the La Crosse virus (LACV), the leading cause of pediatric arbovirus encephalitis in the USA, was associated with the ability of the virus to cross the BBB. LACV infection in weanling mice (aged around 3 weeks) results in vascular leakage in the olfactory bulb/tract (OB/OT) region of the brain, which is not observed in adult mice aged > 6-8 weeks. Thus, we studied age-specific differences in the response of brain capillary endothelial cells (BCECs) to LACV infection. METHODS: To examine mechanisms of LACV-induced BBB breakdown and infection of the CNS, we analyzed BCECs directly isolated from weanling and adult mice as well as established a model where these cells were infected in vitro and cultured for a short period to determine susceptibility to virus infection and cell death. Additionally, we utilized correlative light electron microscopy (CLEM) to examine whether changes in cell morphology and function were also observed in BCECs in vivo. RESULTS: BCECs from weanling, but not adult mice, had detectable infection after several days in culture when taken ex vivo from infected mice suggesting that these cells could be infected in vitro. Further analysis of BCECs from uninfected mice, infected in vitro, showed that weanling BCECs were more susceptible to virus infection than adult BCECs, with higher levels of infected cells, released virus as well as cytopathic effects (CPE) and cell death. Although direct LACV infection is not detected in the weanling BCECs, CLEM analysis of brain tissue from weanling mice indicated that LACV infection induced significant cerebrovascular damage which allowed virus-sized particles to enter the brain parenchyma. CONCLUSIONS: These findings indicate that BCECs isolated from adult and weanling mice have differential viral load, infectivity, and susceptibility to LACV. These age-related differences in susceptibility may strongly influence LACV-induced BBB leakage and neurovascular damage allowing virus invasion of the CNS and the development of neurological disease.


Asunto(s)
Envejecimiento , Barrera Hematoencefálica/virología , Capilares/virología , Muerte Celular , Encefalitis de California/virología , Células Endoteliales/patología , Células Endoteliales/virología , Virus La Crosse/fisiología , Animales , Animales Recién Nacidos , Barrera Hematoencefálica/fisiopatología , Encéfalo/irrigación sanguínea , Encéfalo/patología , Encéfalo/virología , Capilares/patología , Caspasa 3/fisiología , Técnicas de Cultivo de Célula , Modelos Animales de Enfermedad , Encefalitis de California/patología , Encefalitis de California/fisiopatología , Ratones , Ratones Endogámicos C57BL , Microscopía Electrónica , Ensayo de Placa Viral
14.
Cell Syst ; 12(4): 338-352.e5, 2021 04 21.
Artículo en Inglés | MEDLINE | ID: mdl-33894945

RESUMEN

Hit selection from high-throughput assays remains a critical bottleneck in realizing the potential of omic-scale studies in biology. Widely used methods such as setting of cutoffs, prioritizing pathway enrichments, or incorporating predicted network interactions offer divergent solutions yet are associated with critical analytical trade-offs. The specific limitations of these individual approaches and the lack of a systematic way by which to integrate their rankings have contributed to limited overlap in the reported results from comparable genome-wide studies and costly inefficiencies in secondary validation efforts. Using comparative analysis of parallel independent studies as a benchmark, we characterize the specific complementary contributions of each approach and demonstrate an optimal framework to integrate these methods. We describe selection by iterative pathway group and network analysis looping (SIGNAL), an integrated, iterative approach that uses both pathway and network methods to optimize gene prioritization. SIGNAL is accessible as a rapid user-friendly web-based application (https://signal.niaid.nih.gov). A record of this paper's transparent peer review is included in the Supplemental information.


Asunto(s)
Genómica/métodos , Ensayos Analíticos de Alto Rendimiento/métodos , Internet/normas , Humanos
15.
PLoS Pathog ; 17(3): e1009395, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33684179

RESUMEN

The mammalian immune system is constantly challenged by signals from both pathogenic and non-pathogenic microbes. Many of these non-pathogenic microbes have pathogenic potential if the immune system is compromised. The importance of type I interferons (IFNs) in orchestrating innate immune responses to pathogenic microbes has become clear in recent years. However, the control of opportunistic pathogens-and especially intracellular bacteria-by type I IFNs remains less appreciated. In this study, we use the opportunistic, Gram-negative bacterial pathogen Burkholderia cenocepacia (Bc) to show that type I IFNs are capable of limiting bacterial replication in macrophages, preventing illness in immunocompetent mice. Sustained type I IFN signaling through cytosolic receptors allows for increased expression of autophagy and linear ubiquitination mediators, which slows bacterial replication. Transcriptomic analyses and in vivo studies also show that LPS stimulation does not replicate the conditions of intracellular Gram-negative bacterial infection as it pertains to type I IFN stimulation or signaling. This study highlights the importance of type I IFNs in protection against opportunistic pathogens through innate immunity, without the need for damaging inflammatory responses.


Asunto(s)
Infecciones por Burkholderia/inmunología , Burkholderia cenocepacia/inmunología , Inmunidad Innata/inmunología , Interferón Tipo I/inmunología , Macrófagos/inmunología , Animales , Citosol/inmunología , Citosol/microbiología , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL
16.
Nature ; 589(7840): 131-136, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33239787

RESUMEN

The liver connects the intestinal portal vasculature with the general circulation, using a diverse array of immune cells to protect from pathogens that translocate from the gut1. In liver lobules, blood flows from portal triads that are situated in periportal lobular regions to the central vein via a polarized sinusoidal network. Despite this asymmetry, resident immune cells in the liver are considered to be broadly dispersed across the lobule. This differs from lymphoid organs, in which immune cells adopt spatially biased positions to promote effective host defence2,3. Here we used quantitative multiplex imaging, genetic perturbations, transcriptomics, infection-based assays and mathematical modelling to reassess the relationship between the localization of immune cells in the liver and host protection. We found that myeloid and lymphoid resident immune cells concentrate around periportal regions. This asymmetric localization was not developmentally controlled, but resulted from sustained MYD88-dependent signalling induced by commensal bacteria in liver sinusoidal endothelial cells, which in turn regulated the composition of the pericellular matrix involved in the formation of chemokine gradients. In vivo experiments and modelling showed that this immune spatial polarization was more efficient than a uniform distribution in protecting against systemic bacterial dissemination. Together, these data reveal that liver sinusoidal endothelial cells sense the microbiome, actively orchestrating the localization of immune cells, to optimize host defence.


Asunto(s)
Microbioma Gastrointestinal/inmunología , Hígado/inmunología , Hígado/microbiología , Simbiosis/inmunología , Animales , Bacterias/inmunología , Bacterias/aislamiento & purificación , Separación Celular , Quimiocina CXCL9/inmunología , Células Endoteliales/citología , Células Endoteliales/inmunología , Femenino , Humanos , Macrófagos del Hígado/citología , Macrófagos del Hígado/inmunología , Macrófagos del Hígado/metabolismo , Hígado/irrigación sanguínea , Hígado/citología , Linfocitos/inmunología , Masculino , Ratones , Modelos Inmunológicos , Imagen Molecular , Células Mieloides/inmunología , Factor 88 de Diferenciación Mieloide/metabolismo , Transducción de Señal , Simbiosis/genética , Transcriptoma
17.
Sci Signal ; 13(661)2020 12 08.
Artículo en Inglés | MEDLINE | ID: mdl-33293463

RESUMEN

Small, genetically determined differences in transcription [expression quantitative trait loci (eQTLs)] are implicated in complex diseases through unknown molecular mechanisms. Here, we showed that a small, persistent increase in the abundance of the innate pathogen sensor NOD1 precipitated large changes in the transcriptional state of monocytes. A ~1.2- to 1.3-fold increase in NOD1 protein abundance resulting from loss of regulation by the microRNA cluster miR-15b/16 lowered the threshold for ligand-induced activation of the transcription factor NF-κB and the MAPK p38. An additional sustained increase in NOD1 abundance to 1.5-fold over basal amounts bypassed this low ligand concentration requirement, resulting in robust ligand-independent induction of proinflammatory genes and oncogenes. These findings reveal that tight regulation of NOD1 abundance prevents this sensor from exceeding a physiological switching checkpoint that promotes persistent inflammation and oncogene expression. Furthermore, our data provide insight into how a quantitatively small change in protein abundance can produce marked changes in cell state that can serve as the initiator of disease.


Asunto(s)
Regulación de la Expresión Génica , Monocitos/metabolismo , Proteína Adaptadora de Señalización NOD1/biosíntesis , Proteínas Oncogénicas/biosíntesis , Transducción de Señal , Transcripción Genética , Humanos , Inflamación/metabolismo , Células THP-1
18.
Cytometry A ; 97(12): 1248-1264, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33141508

RESUMEN

Deep learning is rapidly becoming the technique of choice for automated segmentation of nuclei in biological image analysis workflows. In order to evaluate the feasibility of training nuclear segmentation models on small, custom annotated image datasets that have been augmented, we have designed a computational pipeline to systematically compare different nuclear segmentation model architectures and model training strategies. Using this approach, we demonstrate that transfer learning and tuning of training parameters, such as the composition, size, and preprocessing of the training image dataset, can lead to robust nuclear segmentation models, which match, and often exceed, the performance of existing, off-the-shelf deep learning models pretrained on large image datasets. We envision a practical scenario where deep learning nuclear segmentation models trained in this way can be shared across a laboratory, facility, or institution, and continuously improved by training them on progressively larger and varied image datasets. Our work provides computational tools and a practical framework for deep learning-based biological image segmentation using small annotated image datasets. Published [2020]. This article is a U.S. Government work and is in the public domain in the USA.


Asunto(s)
Aprendizaje Profundo , Núcleo Celular , Procesamiento de Imagen Asistido por Computador
19.
J Proteome Res ; 19(9): 3716-3731, 2020 09 04.
Artículo en Inglés | MEDLINE | ID: mdl-32529831

RESUMEN

We have used mass spectrometry (MS) to characterize protein signaling in lipopolysaccharide (LPS)-stimulated macrophages from human blood, human THP1 cells, mouse bone marrow, and mouse Raw264.7 cells. Protein ADP-ribosylation was truncated down to phosphoribose, allowing for enrichment and identification of the resulting phosphoribosylated peptides alongside phosphopeptides. Size exclusion chromatography-MS (SEC-MS) was used to separate proteoforms by size; protein complexes were then identified by weighted correlation network analysis (WGCNA) based on their correlated movement into or out of SEC fractions following stimulation, presenting an analysis method for SEC-MS that does not rely on established databases. We highlight two modules of interest: one linked to the apoptosis signal-regulating kinase (ASK) signalosome and the other containing poly(ADP-ribose) polymerase 9 (PARP9). Finally, PARP inhibition was used to perturb the characterized systems, demonstrating the importance of ADP-ribosylation for the global interactome. All post-translational modification (PTM) and interactome data have been aggregated into a meta-database of 6729 proteins, with ADP-ribosylation characterized on 2905 proteins and phosphorylation characterized on 2669 proteins. This database-titled MAPCD, for Macrophage ADP-ribosylation, Phosphorylation, and Complex Dynamics-serves as an invaluable resource for studying crosstalk between the ADP-ribosylome, phosphoproteome, and interactome.


Asunto(s)
ADP-Ribosilación , Lipopolisacáridos , Adenosina Difosfato , Adenosina Difosfato Ribosa/metabolismo , Animales , Lipopolisacáridos/farmacología , Macrófagos/metabolismo , Ratones , Proteoma/genética , Proteoma/metabolismo
20.
Biol Methods Protoc ; 5(1): bpaa007, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33782652

RESUMEN

Current methods of genotyping small insertion/deletion (indel) mutations are costly, laborious, and can be unreliable. To address this, we have developed a method for small indel genotyping in a single polymerase chain reaction, with wild-type, heterozygous and mutant alleles distinguishable by band pattern in routine agarose gel electrophoresis. We demonstrate this method with multiple genes to distinguish 10 bp, 4 bp and even 1 bp deletions from the wild type. Through systematic testing of numerous primer designs, we also propose guidelines for genotyping small indel mutations. Our method provides a convenient approach to genotyping small indels derived from clustered regularly interspaced short palindromic repeats-mediated gene editing, N-ethyl-N-nitrosourea induced mutagenesis or diagnosis of naturally occurring polymorphisms/mutations.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...