Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
1.
Sci Rep ; 14(1): 1164, 2024 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-38216642

RESUMEN

Static Fourier transform spectrometers are devices that can be realized as monolithic and compact assemblies. In the "grating-based" monolithic version, they are usually realized gluing together a beam-splitter with two reflective diffraction gratings using spacers as connecting elements. In this work we present the development and test of an alternative form of this kind of instrument in which the dispersive elements are Littrow's prisms and are glued to the splitting element, forming in this way a robust and filled structure with no air gaps. The device can work in the visible/near infrared spectral region with a resolution power that varies across the spectral range due to the dispersion of the used glasses. The absence of hollow regions inside the monolithic block makes the device extremely robust and protects the optical surfaces inside the interferometer from possible contaminations. The device can be easily miniaturized, as it does not require spacers or structural elements other than just the optical parts. The tested instrument works in the 470-850 nm wavelength range with a variable resolution between 3000 and 300.

2.
Sci Adv ; 9(35): eadh7747, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37647394

RESUMEN

In extreme ultraviolet spectroscopy, the photoionization process occurring in a molecule due to the absorption of a single photon can trigger an ultrafast nuclear motion in the cation. Taking advantage of attosecond photoelectron interferometry, where the absorption of the extreme ultraviolet photon is accompanied by the exchange of an additional infrared quantum of light, one can investigate the influence of nuclear dynamics by monitoring the characteristics of the photoelectron spectra generated by the two-color field. Here, we show that attosecond photoelectron interferometry is sensitive to the nuclear response by measuring the two-color photoionization spectra in a mixture of methane (CH4) and deuteromethane (CD4). The effect of the different nuclear evolution in the two isotopologues manifests itself in the modification of the amplitude and contrast of the oscillations of the photoelectron peaks. Our work indicates that nuclear dynamics can affect the coherence properties of the electronic wave packet emitted by photoionization on a time scale as short as a few femtoseconds.

3.
Nat Commun ; 13(1): 7103, 2022 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-36402766

RESUMEN

The advent of ultrafast laser science offers the unique opportunity to combine Floquet engineering with extreme time resolution, further pushing the optical control of matter into the petahertz domain. However, what is the shortest driving pulse for which Floquet states can be realised remains an unsolved matter, thus limiting the application of Floquet theory to pulses composed by many optical cycles. Here we ionized Ne atoms with few-femtosecond pulses of selected time duration and show that a Floquet state can be observed already with a driving field that lasts for only 10 cycles. For shorter pulses, down to 2 cycles, the finite lifetime of the driven state can still be explained using an analytical model based on Floquet theory. By demonstrating that the amplitude and number of Floquet-like sidebands in the photoelectron spectrum can be controlled not only with the driving laser pulse intensity and frequency, but also by its duration, our results add a new lever to the toolbox of Floquet engineering.

4.
J Phys Chem Lett ; 13(48): 11169-11175, 2022 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-36445180

RESUMEN

Dissociation of the ethylene cation is a prototypical multistep pathway in which the exact mechanisms leading to internal energy conversions are not fully known. For example, it is still unclear how the energy is exactly redistributed among the internal modes and which step is rate-determining. Here we use few-femtosecond extreme-ultraviolet pulses of tunable energy to excite a different superposition of the four lowest states of C2H4+ and probe the subsequent fast relaxation with a short infrared pulse. Our results demonstrate that the infrared pulse photoexcites the cationic ground state (GS) to higher excited states, producing a hot GS upon relaxation, which enhances the fragmentation yield. As the photoexcitation probability of the GS strongly depends on the molecular geometry, the probing by the IR pulse provides information about the ultrafast excited-state dynamics and the type of conical intersection (planar or twisted) involved in the first 20 fs of the nonradiative relaxation.

5.
Opt Express ; 29(11): 15906-15917, 2021 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-34154166

RESUMEN

Static Fourier transform spectrometers (S-FTSs) are well-consolidated instruments providing high throughput and high spectral resolution in a narrow spectral band. They use two reflective gratings as dispersive elements in a Michelson interferometer. Gratings allow high spectral dispersion and consequently high resolution, but, due to the light diffused from their grooves, they are one of the main noise sources in the reconstructed spectrum. In this work, we compare the signal-to-noise ratio performance of a prism-based S-FTS with that of a grating-based S-FTS. As a primary advantage, prisms give intrinsically lower diffused light than gratings. Furthermore, they do not have multiple diffracted orders, reducing thereafter the optical constraints on the instrumental baffling.

6.
Nat Commun ; 12(1): 1021, 2021 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-33589638

RESUMEN

The electro-optical properties of most semiconductors and insulators of technological interest are dominated by the presence of electron-hole quasi-particles, called excitons. The manipulation of excitons in dielectrics has recently received great attention, with possible applications in different fields including optoelectronics and photonics. Here, we apply attosecond transient reflection spectroscopy in a sequential two-foci geometry and observe sub-femtosecond dynamics of a core-level exciton in bulk MgF2 single crystals. Furthermore, we access absolute phase delays, which allow for an unambiguous comparison with theoretical calculations. Our results show that excitons surprisingly exhibit a dual atomic- and solid-like character, which manifests itself on different time scales. While the former is responsible for a femtosecond optical Stark effect, the latter dominates the attosecond excitonic response. Further theoretical investigation reveals a link with the exciton sub-femtosecond nanometric motion and allows us to envision a new route to control exciton dynamics in the close-to-petahertz regime.

7.
Commun Chem ; 4(1): 73, 2021 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-36697766

RESUMEN

Sudden ionisation of a relatively large molecule can initiate a correlation-driven process dubbed charge migration, where the electron density distribution is expected to rapidly move along the molecular backbone. Capturing this few-femtosecond or attosecond charge redistribution would represent the real-time observation of electron correlation in a molecule with the enticing prospect of following the energy flow from a single excited electron to the other coupled electrons in the system. Here, we report a time-resolved study of the correlation-driven charge migration process occurring in the nucleic-acid base adenine after ionisation with a 15-35 eV attosecond pulse. We find that the production of intact doubly charged adenine - via a shortly-delayed laser-induced second ionisation event - represents the signature of a charge inflation mechanism resulting from many-body excitation. This conclusion is supported by first-principles time-dependent simulations. These findings may contribute to the control of molecular reactivity at the electronic, few-femtosecond time scale.

8.
Rev Sci Instrum ; 91(5): 053002, 2020 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-32486725

RESUMEN

We present an innovative beamline for extreme ultraviolet (XUV)-infrared (IR) pump-probe reflection spectroscopy in solids with attosecond temporal resolution. The setup uses an actively stabilized interferometer, where attosecond pulse trains or isolated attosecond pulses are produced by high-order harmonic generation in gases. After collinear recombination, the attosecond XUV pulses and the femtosecond IR pulses are focused twice in sequence by toroidal mirrors, giving two spatially separated interaction regions. In the first region, the combination of a gas target with a time-of-flight spectrometer allows for attosecond photoelectron spectroscopy experiments. In the second focal region, an XUV reflectometer is used for attosecond transient reflection spectroscopy (ATRS) experiments. Since the two measurements can be performed simultaneously, precise pump-probe delay calibration can be achieved, thus opening the possibility for a new class of attosecond experiments on solids. Successful operation of the beamline is demonstrated by the generation and characterization of isolated attosecond pulses, the measurement of the absolute reflectivity of SiO2, and by performing simultaneous photoemission/ATRS in Ge.

9.
Struct Dyn ; 7(1): 014303, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-32039283

RESUMEN

Here, we report on a novel narrowband High Harmonic Generation (HHG) light source designed for ultrafast photoelectron spectroscopy (PES) on solids. Notably, at 16.9 eV photon energy, the harmonics bandwidth equals 19 meV. This result has been obtained by seeding the HHG process with 230 fs pulses at 515 nm. The ultimate energy resolution achieved on a polycrystalline Au sample at 40 K is ∼22 meV at 16.9 eV. These parameters set a new benchmark for narrowband HHG sources and have been obtained by varying the repetition rate up to 200 kHz and, consequently, mitigating the space charge, operating with ≈ 3 × 10 7 electrons/s and ≈ 5 × 10 8 photons/s. By comparing the harmonics bandwidth and the ultimate energy resolution with a pulse duration of ∼105 fs (as retrieved from time-resolved experiments on bismuth selenide), we demonstrate a new route for ultrafast space-charge-free PES experiments on solids close to transform-limit conditions.

10.
Opt Lett ; 44(6): 1308-1311, 2019 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-30874637

RESUMEN

We demonstrate the generation of few-cycle deep ultraviolet pulses via frequency upconversion of 5-fs near-infrared pulses in argon using a laser-fabricated gas cell. The measured spectrum extends from 210 to 340 nm, corresponding to a transform-limited pulse duration of 1.45 fs. We extract from a dispersion-free second-order cross-correlation measurement a pulse duration of 1.9 fs, defining a new record in the deep ultraviolet spectral range.

11.
J Phys Chem A ; 123(7): 1295-1302, 2019 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-30668129

RESUMEN

The initial deactivation pathways of gaseous 2-nitrophenol excited at 268 nm were investigated by time-resolved photoelectron spectroscopy (TRPES) with femtosecond-VUV light, produced by a monochromatized high harmonic generation source. TRPES allowed us to obtain new, valuable experimental information about the ultrafast excited-state dynamics of 2-nitrophenol in the gas phase. In accord with recent ab initio on-the-fly nonadiabatic molecular dynamic simulations, our results validate the occurrence of an ultrafast intersystem crossing leading to an intermediate state that decays on a subpicosecond time scale with a branched mechanisms. Two decay pathways are experimentally observed. One probably involves proton transfer, leading to the most stable triplet aci-form of 2-nitrophenol; the second pathway may involve OH rotation. We propose that following intersystem crossing, an ultrafast fragmentation channel leading to OH or HONO loss could also be operative.

12.
J Phys Chem Lett ; 9(16): 4570-4577, 2018 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-30044916

RESUMEN

Attosecond pump-probe experiments performed in small molecules have allowed tracking charge dynamics in the natural time scale of electron motion. That this is also possible in biologically relevant molecules is still a matter of debate, because the large number of available nuclear degrees of freedom might destroy the coherent charge dynamics induced by the attosecond pulse. Here we investigate extreme ultraviolet-induced charge dynamics in the amino acid tryptophan. We find that, although nuclear motion and nonadiabatic effects introduce some decoherence in the moving electron wave packet, these do not significantly modify the coherence induced by the attosecond pulse during the early stages of the dynamics, at least for molecules in their equilibrium geometry. Our conclusions are based on elaborate theoretical calculations and the experimental observation of sub-4 fs dynamics, which can only be reasonably assigned to electronic motion. Hence, attosecond pump-probe spectroscopy appears as a promising approach to induce and image charge dynamics in complex molecules.

13.
Opt Express ; 26(6): 6771-6784, 2018 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-29609365

RESUMEN

Sub-10-fs pulses tunable in the extreme-ultraviolet (XUV) spectral region are particularly important in many research fields: from atomic and molecular spectroscopy to the study of relaxation processes in solids and transition phase processes, from holography to free-electron laser injection. A crucial prerequisite for all applications is the accurate measurement of the temporal characteristics of these pulses. To fulfill this purpose, many phase retrieval algorithms have been successfully applied to reconstruct XUV attosecond pulses. Nevertheless, their extension to XUV femtosecond pulses is not trivial and has never been investigated/reported so far. We demonstrate that ultrashort XUV pulses, produced by high-order harmonic generation, spectrally filtered by a time-delay compensated monochromator, can be fully characterized, in terms of temporal intensity and phase, by employing the ptychographic reconstruction technique while other common reconstruction algorithms fail. This allows us to report on the generation and complete temporal characterization of XUV pulses with duration down to 5 fs, which constitute the shortest XUV pulse ever achieved via a time-delay compensated monochromator.

14.
Appl Opt ; 57(5): 1202-1211, 2018 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-29469865

RESUMEN

The optical design of a plane-grating monochromator mainly intended for high resolution in the extreme ultraviolet and soft x-ray is presented. The configuration has three optical elements. It uses a uniform line-spaced plane grating illuminated in the converging light coming from a focusing concave mirror and an additional plane mirror that is needed to change the grating subtended angle to keep the system in focus on a fixed slit. The parameters of the focusing mirror are determined to introduce a coma that compensates for the coma given by the grating. A monochromator for the 12-50 eV region is designed for application to high-order laser harmonics.

15.
Nat Commun ; 9(1): 302, 2018 01 16.
Artículo en Inglés | MEDLINE | ID: mdl-29335531

RESUMEN

In the original version of this Article, the affiliation for Luca Poletto was incorrectly given as 'European XFEL GmbH, Holzkoppel 4, 22869 Schenefeld, Hamburg, Germany', instead of the correct 'CNR, Istituto di Fotonica e Nanotecnologie Padova, Via Trasea 7, 35131 Padova, Italy'. This has now been corrected in both the PDF and HTML versions of the Article.

16.
J Synchrotron Radiat ; 25(Pt 1): 52-58, 2018 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-29271751

RESUMEN

The optical layout of soft X-ray grating compressors designed to provide both positive and negative group-delay dispersion (GDD) is discussed. They are tailored for chirped-pulse-amplification experiments with seeded free-electron laser sources. Designs with plane or concave gratings are discussed, depending on the sign of the GDD to be introduced.

17.
J Synchrotron Radiat ; 25(Pt 1): 131-137, 2018 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-29271762

RESUMEN

The preliminary design of a monochromatic beamline for FLASH2 at DESY is presented. The monochromator is tunable in the 50-1000 eV energy range with resolving power higher than 1000 and temporal response below 50 fs over the whole energy range. A time-delay-compensated configuration using the variable-line-spacing monochromator design with two gratings is adopted: the first grating disperses the radiation on its output plane, where the intermediate slit performs the spectral selection; the second grating compensates for the pulse-front tilt and for the spectral dispersion due to diffraction from the first grating.

18.
Nat Commun ; 8(1): 493, 2017 09 08.
Artículo en Inglés | MEDLINE | ID: mdl-28887513

RESUMEN

Coherent diffractive imaging of individual free nanoparticles has opened routes for the in situ analysis of their transient structural, optical, and electronic properties. So far, single-shot single-particle diffraction was assumed to be feasible only at extreme ultraviolet and X-ray free-electron lasers, restricting this research field to large-scale facilities. Here we demonstrate single-shot imaging of isolated helium nanodroplets using extreme ultraviolet pulses from a femtosecond-laser-driven high harmonic source. We obtain bright wide-angle scattering patterns, that allow us to uniquely identify hitherto unresolved prolate shapes of superfluid helium droplets. Our results mark the advent of single-shot gas-phase nanoscopy with lab-based short-wavelength pulses and pave the way to ultrafast coherent diffractive imaging with phase-controlled multicolor fields and attosecond pulses.Diffraction imaging studies of free individual nanoparticles have so far been restricted to XUV and X-ray free - electron laser facilities. Here the authors demonstrate the possibility of using table-top XUV laser sources to image prolate shapes of superfluid helium droplets.

19.
Nat Commun ; 7: 13688, 2016 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-27905401

RESUMEN

Chirped pulse amplification in optical lasers is a revolutionary technique, which allows the generation of extremely powerful femtosecond pulses in the infrared and visible spectral ranges. Such pulses are nowadays an indispensable tool for a myriad of applications, both in fundamental and applied research. In recent years, a strong need emerged for light sources producing ultra-short and intense laser-like X-ray pulses, to be used for experiments in a variety of disciplines, ranging from physics and chemistry to biology and material sciences. This demand was satisfied by the advent of short-wavelength free-electron lasers. However, for any given free-electron laser setup, a limit presently exists in the generation of ultra-short pulses carrying substantial energy. Here we present the experimental implementation of chirped pulse amplification on a seeded free-electron laser in the extreme-ultraviolet, paving the way to the generation of fully coherent sub-femtosecond gigawatt pulses in the water window (2.3-4.4 nm).

20.
Phys Rev Lett ; 116(16): 163003, 2016 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-27152799

RESUMEN

Autoionizing Rydberg states of molecular N_{2} are studied using time-, energy-, and angular-resolved photoelectron spectroscopy. A femtosecond extreme ultraviolet pulse with a photon energy of 17.5 eV excites the resonance and a subsequent IR pulse ionizes the molecule before the autoionization takes place. The angular-resolved photoelectron spectra depend on pump-probe time delay and allow for the distinguishing of two electronic states contributing to the resonance. The lifetime of one of the contributions is determined to be 14±1 fs, while the lifetime of the other appears to be significantly shorter than the time resolution of the experiment. These observations suggest that the Rydberg states in this energy region are influenced by the effect of interference stabilization and merge into a complex resonance.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA