Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-38083060

RESUMEN

Aside from a clinical interest in electroencephalography (EEG) measurements of real-time data with a high temporal resolution, there is a demand for acquisition systems that are operable outside the laboratory environment. In this study, we designed a wearable and low-power EEG system for multichannel EEG acquisition beyond the lab doors. Around-the-ear cEEGrid electrodes are used to capture 8 biopotential channels which are amplified by low-power precision instrumentation amplifiers and passed on to an analog-to-digital converter (ADC). An ESP32 micro-controller captures the data from the ADC and stores it on an external SD card. The proposed system is compared to a state-of-the-art EEG acquisition system (BioSemi) to assess its diagnostic power for auditory brainstem responses (ABRs). The recordings with our portable system match, and even outperform, the baseline method's specifications. Our hardware opens up new avenues for fast sampling-rate auditory EEG recordings that can be used in hearing diagnostics, damage prevention and treatment follow up.


Asunto(s)
Electroencefalografía , Dispositivos Electrónicos Vestibles , Electrodos , Audición , Amplificadores Electrónicos
2.
J Clin Med ; 12(2)2023 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-36675438

RESUMEN

Understanding cochlear anatomy is crucial for developing less traumatic electrode arrays and insertion guidance for cochlear implantation. The human cochlea shows considerable variability in size and morphology. This study analyses 1000+ clinical temporal bone CT images using a web-based image analysis tool. Cochlear size and shape parameters were obtained to determine population statistics and perform regression and correlation analysis. The analysis revealed that cochlear morphology follows Gaussian distribution, while cochlear dimensions A and B are not well-correlated to each other. Additionally, dimension B is more correlated to duct lengths, the wrapping factor and volume than dimension A. The scala tympani size varies considerably among the population, with the size generally decreasing along insertion depth with dimensional jumps through the trajectory. The mean scala tympani radius was 0.32 mm near the 720° insertion angle. Inter-individual variability was four times that of intra-individual variation. On average, the dimensions of both ears are similar. However, statistically significant differences in clinical dimensions were observed between ears of the same patient, suggesting that size and shape are not the same. Harnessing deep learning-based, automated image analysis tools, our results yielded important insights into cochlear morphology and implant development, helping to reduce insertion trauma and preserving residual hearing.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA