Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 120
Filtrar
1.
Nat Immunol ; 25(5): 873-885, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38553615

RESUMEN

Metabolic programming is important for B cell fate, but the bioenergetic requirement for regulatory B (Breg) cell differentiation and function is unknown. Here we show that Breg cell differentiation, unlike non-Breg cells, relies on mitochondrial electron transport and homeostatic levels of reactive oxygen species (ROS). Single-cell RNA sequencing analysis revealed that TXN, encoding the metabolic redox protein thioredoxin (Trx), is highly expressed by Breg cells, unlike Trx inhibitor TXNIP which was downregulated. Pharmacological inhibition or gene silencing of TXN resulted in mitochondrial membrane depolarization and increased ROS levels, selectively suppressing Breg cell differentiation and function while favoring pro-inflammatory B cell differentiation. Patients with systemic lupus erythematosus (SLE), characterized by Breg cell deficiencies, present with B cell mitochondrial membrane depolarization, elevated ROS and fewer Trx+ B cells. Exogenous Trx stimulation restored Breg cells and mitochondrial membrane polarization in SLE B cells to healthy B cell levels, indicating Trx insufficiency underlies Breg cell impairment in patients with SLE.


Asunto(s)
Proteínas Portadoras , Diferenciación Celular , Lupus Eritematoso Sistémico , Mitocondrias , Especies Reactivas de Oxígeno , Tiorredoxinas , Tiorredoxinas/metabolismo , Tiorredoxinas/genética , Humanos , Lupus Eritematoso Sistémico/inmunología , Lupus Eritematoso Sistémico/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Mitocondrias/metabolismo , Femenino , Animales , Ratones , Potencial de la Membrana Mitocondrial , Masculino , Adulto , Oxidación-Reducción
2.
WIREs Mech Dis ; 16(2): e1638, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38155593

RESUMEN

Titin, the so-called "third filament" of the sarcomere, represents a difficult challenge for the determination of damaging genetic variants. A single titin molecule extends across half the length of a sarcomere in striated muscle, fulfilling a variety of vital structural and signaling roles, and has been linked to an equally varied range of myopathies, resulting in a significant burden on individuals and healthcare systems alike. While the consequences of truncating variants of titin are well-documented, the ramifications of the missense variants prevalent in the general population are less so. We here present a compendium of titin missense variants-those that result in a single amino-acid substitution in coding regions-reported to be pathogenic and discuss these in light of the nature of titin and the variant position within the sarcomere and their domain, the structural, pathological, and biophysical characteristics that define them, and the methods used for characterization. Finally, we discuss the current knowledge and integration of the multiple fields that have contributed to our understanding of titin-related pathology and offer suggestions as to how these concurrent methodologies may aid the further development in our understanding of titin and hopefully extend to other, less well-studied giant proteins. This article is categorized under: Cardiovascular Diseases > Genetics/Genomics/Epigenetics Congenital Diseases > Genetics/Genomics/Epigenetics Congenital Diseases > Molecular and Cellular Physiology.


Asunto(s)
Músculo Estriado , Sarcómeros , Humanos , Conectina/genética , Músculo Esquelético/metabolismo , Músculo Estriado/fisiología , Sarcómeros/genética
3.
Curr Opin Struct Biol ; 84: 102757, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38118364

RESUMEN

Antibodies are large protein assemblies capable of both specifically recognising antigens and engaging with other proteins and receptors to coordinate immune action. Traditionally, structural studies have been dedicated to antibody variable regions, but efforts to determine and model full-length antibody structures are emerging. Here we review the current knowledge on modelling the structures of antibody assemblies, focusing on their conformational flexibility and the challenge this poses to obtaining and evaluating structural models. Integrative modelling approaches, combining experiments (cryo-electron microscopy, mass spectrometry, etc.) and computational methods (molecular dynamics simulations, deep-learning based approaches, etc.), hold the promise to map the complex conformational landscape of full-length antibody structures.


Asunto(s)
Anticuerpos , Proteínas , Microscopía por Crioelectrón/métodos , Conformación Molecular , Simulación de Dinámica Molecular , Conformación Proteica
4.
Nat Methods ; 2023 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-37932398

RESUMEN

Class-switch recombination (CSR) is an integral part of B cell maturation. Here we present sciCSR (pronounced 'scissor', single-cell inference of class-switch recombination), a computational pipeline that analyzes CSR events and dynamics of B cells from single-cell RNA sequencing (scRNA-seq) experiments. Validated on both simulated and real data, sciCSR re-analyzes scRNA-seq alignments to differentiate productive heavy-chain immunoglobulin transcripts from germline 'sterile' transcripts. From a snapshot of B cell scRNA-seq data, a Markov state model is built to infer the dynamics and direction of CSR. Applying sciCSR on severe acute respiratory syndrome coronavirus 2 vaccination time-course scRNA-seq data, we observe that sciCSR predicts, using data from an earlier time point in the collected time-course, the isotype distribution of B cell receptor repertoires of subsequent time points with high accuracy (cosine similarity ~0.9). Using processes specific to B cells, sciCSR identifies transitions that are often missed by conventional RNA velocity analyses and can reveal insights into the dynamics of B cell CSR during immune response.

5.
J Invest Dermatol ; 143(12): 2468-2475.e6, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37414245

RESUMEN

Generalized pustular psoriasis is a potentially life-threatening skin disease, associated with IL36RN disease alleles. IL36RN encodes the IL-36 receptor antagonist (IL-36Ra), a protein that downregulates the activity of IL-36 cytokines by blocking their receptor (IL-36R). Although generalized pustular psoriasis can be treated with IL-36R inhibitors, the structural underpinnings of the IL-36Ra/IL-36R interaction remain poorly understood. In this study, we sought to address this question by systematically investigating the effects of IL36RN sequence changes. We experimentally characterized the effects of 30 IL36RN variants on protein stability. In parallel, we used a machinelearning tool (Rhapsody) to analyze the IL-36Ra three-dimensional structure and predict the impact of all possible amino acid substitutions. This integrated approach identified 21 amino acids that are essential for IL-36Ra stability. We next investigated the effects of IL36RN changes on IL-36Ra/IL-36R binding and IL-36R signaling. Combining invitro assays and machine learning with a second program (mCSM), we identified 13 amino acids that are critical for IL-36Ra/IL36R engagement. Finally, we experimentally validated three representative predictions, further confirming the reliability of Rhapsody and mCSM. These findings shed light on the structural determinants of IL-36Ra activity, with potential to facilitate the design of new IL-36 inhibitors and aid the interpretation of IL36RN variants in diagnostic settings.


Asunto(s)
Exantema , Psoriasis , Enfermedades Cutáneas Vesiculoampollosas , Humanos , Sustitución de Aminoácidos , Aminoácidos , Interleucinas/metabolismo , Psoriasis/genética , Reproducibilidad de los Resultados
6.
Nat Commun ; 14(1): 3378, 2023 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-37291228

RESUMEN

B cells are known to contribute to the anti-tumor immune response, especially in immunogenic tumors such as melanoma, yet humoral immunity has not been characterized in these cancers to detail. Here we show comprehensive phenotyping in samples of circulating and tumor-resident B cells as well as serum antibodies in melanoma patients. Memory B cells are enriched in tumors compared to blood in paired samples and feature distinct antibody repertoires, linked to specific isotypes. Tumor-associated B cells undergo clonal expansion, class switch recombination, somatic hypermutation and receptor revision. Compared with blood, tumor-associated B cells produce antibodies with proportionally higher levels of unproductive sequences and distinct complementarity determining region 3 properties. The observed features are signs of affinity maturation and polyreactivity and suggest an active and aberrant autoimmune-like reaction in the tumor microenvironment. Consistent with this, tumor-derived antibodies are polyreactive and characterized by autoantigen recognition. Serum antibodies show reactivity to antigens attributed to autoimmune diseases and cancer, and their levels are higher in patients with active disease compared to post-resection state. Our findings thus reveal B cell lineage dysregulation with distinct antibody repertoire and specificity, alongside clonally-expanded tumor-infiltrating B cells with autoimmune-like features, shaping the humoral immune response in melanoma.


Asunto(s)
Linfocitos B , Melanoma , Humanos , Melanoma/genética , Anticuerpos , Inmunidad Humoral , Autoantígenos/genética , Microambiente Tumoral
7.
Discov Immunol ; 2(1): kyad002, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38567069

RESUMEN

Sustainable modern poultry production depends on effective protection against infectious diseases and a diverse range of antibodies is key for an effective immune response. In the domestic chicken, somatic gene conversion is the dominant process in which the antibody immunoglobulin genes are diversified. Affinity maturation by somatic hypermutation (SHM) also occurs, but the relative contribution of gene conversion versus somatic hypermutation to immunoglobulin (Ig) gene diversity is poorly understood. In this study, we use high throughput long-read sequencing to study immunoglobulin diversity in multiple immune-associated tissues in Rhode Island Red chickens. To better understand the impact of genetic diversification in the chicken, a novel gene conversion identification software was developed (BrepConvert). In this study, BrepConvert enabled the identification of over 1 million gene conversion events. Mapping the occurrence of putative somatic gene conversion (SGC) events throughout the variable gene region revealed repetitive and highly restricted patterns of genetic insertions in both the antibody heavy and light chains. These patterns coincided with the locations of genetic variability in available pseudogenes and align with antigen binding sites, predominately the complementary determining regions (CDRs). We found biased usage of pseudogenes during gene conversion, as well as immunoglobulin heavy chain diversity gene (IGHD) preferences during V(D)J gene rearrangement, suggesting that antibody diversification in chickens is more focused than the genetic potential for diversity would suggest.

8.
Comput Struct Biotechnol J ; 20: 6302-6316, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36408455

RESUMEN

Coronavirus disease 2019 (COVID-19) caused by SARS-CoV-2 is an ongoing pandemic that causes significant health/socioeconomic burden. Variants of concern (VOCs) have emerged affecting transmissibility, disease severity and re-infection risk. Studies suggest that the - N-terminal domain (NTD) of the spike protein may have a role in facilitating virus entry via sialic-acid receptor binding. Furthermore, most VOCs include novel NTD variants. Despite global sequence and structure similarity, most sialic-acid binding pockets in NTD vary across coronaviruses. Our work suggests ongoing evolutionary tuning of the sugar-binding pockets and recent analyses have shown that NTD insertions in VOCs tend to lie close to loops. We extended the structural characterisation of these sugar-binding pockets and explored whether variants could enhance sialic acid-binding. We found that recent NTD insertions in VOCs (i.e., Gamma, Delta and Omicron variants) and emerging variants of interest (VOIs) (i.e., Iota, Lambda and Theta variants) frequently lie close to sugar-binding pockets. For some variants, including the recent Omicron VOC, we find increases in predicted sialic acid-binding energy, compared to the original SARS-CoV-2, which may contribute to increased transmission. These binding observations are supported by molecular dynamics simulations (MD). We examined the similarity of NTD across Betacoronaviruses to determine whether the sugar-binding pockets are sufficiently similar to be exploited in drug design. Whilst most pockets are too structurally variable, we detected a previously unknown highly structurally conserved pocket which can be investigated in pursuit of a generic pan-Betacoronavirus drug. Our structure-based analyses help rationalise the effects of VOCs and provide hypotheses for experiments. Our findings suggest a strong need for experimental monitoring of changes in NTD of VOCs.

9.
Sci Rep ; 12(1): 15201, 2022 09 08.
Artículo en Inglés | MEDLINE | ID: mdl-36076045

RESUMEN

Multidomain proteins composed of individual domains connected by flexible linkers pose a challenge for structural studies due to their intrinsic conformational dynamics. Integrated modelling approaches provide a means to characterise protein flexibility by combining experimental measurements with molecular simulations. In this study, we characterise the conformational dynamics of the catalytic RBR domain of the E3 ubiquitin ligase HOIP, which regulates immune and inflammatory signalling pathways. Specifically, we combine small angle X-ray scattering experiments and molecular dynamics simulations to generate weighted conformational ensembles of the HOIP RBR domain using two different approaches based on maximum parsimony and maximum entropy principles. Both methods provide optimised ensembles that are instrumental in rationalising observed differences between SAXS-based solution studies and available crystal structures and highlight the importance of interdomain linker flexibility.


Asunto(s)
Proteínas , Ubiquitina-Proteína Ligasas , Simulación de Dinámica Molecular , Conformación Proteica , Proteínas/química , Dispersión del Ángulo Pequeño , Ubiquitina-Proteína Ligasas/metabolismo , Difracción de Rayos X
11.
Antioxidants (Basel) ; 11(7)2022 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-35883853

RESUMEN

Coenzyme A (CoA) is a key cellular metabolite known for its diverse functions in metabolism and regulation of gene expression. CoA was recently shown to play an important antioxidant role under various cellular stress conditions by forming a disulfide bond with proteins, termed CoAlation. Using anti-CoA antibodies and liquid chromatography tandem mass spectrometry (LC-MS/MS) methodologies, CoAlated proteins were identified from various organisms/tissues/cell-lines under stress conditions. In this study, we integrated currently known CoAlated proteins into mammalian and bacterial datasets (CoAlomes), resulting in a total of 2093 CoAlated proteins (2862 CoAlation sites). Functional classification of these proteins showed that CoAlation is widespread among proteins involved in cellular metabolism, stress response and protein synthesis. Using 35 published CoAlated protein structures, we studied the stabilization interactions of each CoA segment (adenosine diphosphate (ADP) moiety and pantetheine tail) within the microenvironment of the modified cysteines. Alternating polar-non-polar residues, positively charged residues and hydrophobic interactions mainly stabilize the pantetheine tail, phosphate groups and the ADP moiety, respectively. A flexible nature of CoA is observed in examined structures, allowing it to adapt its conformation through interactions with residues surrounding the CoAlation site. Based on these findings, we propose three modes of CoA binding to proteins. Overall, this study summarizes currently available knowledge on CoAlated proteins, their functional distribution and CoA-protein stabilization interactions.

12.
Front Immunol ; 13: 807104, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35592326

RESUMEN

Immunoglobulin gene heterogeneity reflects the diversity and focus of the humoral immune response towards different infections, enabling inference of B cell development processes. Detailed compositional and lineage analysis of long read IGH repertoire sequencing, combining examples of pandemic, epidemic and endemic viral infections with control and vaccination samples, demonstrates general responses including increased use of IGHV4-39 in both Zaire Ebolavirus (EBOV) and COVID-19 patient cohorts. We also show unique characteristics absent in Respiratory Syncytial Virus or yellow fever vaccine samples: EBOV survivors show unprecedented high levels of class switching events while COVID-19 repertoires from acute disease appear underdeveloped. Despite the high levels of clonal expansion in COVID-19 IgG1 repertoires there is a striking lack of evidence of germinal centre mutation and selection. Given the differences in COVID-19 morbidity and mortality with age, it is also pertinent that we find significant differences in repertoire characteristics between young and old patients. Our data supports the hypothesis that a primary viral challenge can result in a strong but immature humoral response where failures in selection of the repertoire risk off-target effects.


Asunto(s)
COVID-19 , Ebolavirus , Fiebre Hemorrágica Ebola , Virus Sincitial Respiratorio Humano , Anticuerpos Antivirales , Humanos , Pandemias , Virus Sincitial Respiratorio Humano/genética , SARS-CoV-2
13.
J Mol Biol ; 434(17): 167600, 2022 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-35460669

RESUMEN

The human soluble epoxide hydrolase (hsEH) is a key regulator of epoxy fatty acid (EpFA) metabolism. Inhibition of sEH can maintain endogenous levels of beneficial EpFAs and reduce the levels of their corresponding diol products, thus ameliorating a variety of pathological conditions including cardiovascular, central nervous system and metabolic diseases. The quest for orthosteric drugs that bind directly to the catalytic crevice of hsEH has been prolonged and sustained over the past decades, but the disappointing outcome of clinical trials to date warrants alternative pharmacological approaches. Previously, we have shown that hsEH can be allosterically inhibited by the endogenous electrophilic lipid 15-deoxy-Δ12,14-Prostaglandin-J2, via covalent adduction to two cysteines, C423 and C522. In this study, we explore the properties and behaviour of three electrophilic lipids belonging to the class of the nitro fatty acids, namely 9- and 10-nitrooleate and 10-nitrolinoleate. Biochemical and biophysical investigations revealed that, in addition to C423 and C522, nitro fatty acids can covalently bind to additional nucleophilic residues in hsEH C-terminal domain (CTD), two of which predicted in this study to be latent allosteric sites. Systematic mapping of the protein mutational space and evaluation of possible propagation pathways delineated selected residues, both in the allosteric patches and in other regions of the enzyme, envisaged to play a role in allosteric signalling. The responses elicited by the ligands on the covalent adduction sites supports future fragment-based design studies of new allosteric effectors for hsEH with increased efficacy and selectivity.


Asunto(s)
Epóxido Hidrolasas , Ácidos Linoleicos , Nitrocompuestos , Regulación Alostérica/efectos de los fármacos , Cisteína/metabolismo , Epóxido Hidrolasas/antagonistas & inhibidores , Epóxido Hidrolasas/química , Epóxido Hidrolasas/metabolismo , Humanos , Ácidos Linoleicos/química , Ácidos Linoleicos/farmacología , Nitrocompuestos/química , Nitrocompuestos/farmacología
15.
Diabetes ; 71(4): 837-852, 2022 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-35073578

RESUMEN

Serum progesterone sulfates were evaluated in the etiology of gestational diabetes mellitus (GDM). Serum progesterone sulfates were measured using ultra-performance liquid chromatography-tandem mass spectrometry in four patient cohorts: 1) the Hyperglycemia and Adverse Pregnancy Outcomes study; 2) London-based women of mixed ancestry and 3) U.K.-based women of European ancestry with or without GDM; and 4) 11-13 weeks pregnant women with BMI ≤25 or BMI ≥35 kg/m2 with subsequent uncomplicated pregnancies or GDM. Glucose-stimulated insulin secretion (GSIS) was evaluated in response to progesterone sulfates in mouse islets and human islets. Calcium fluorescence was measured in HEK293 cells expressing transient receptor potential cation channel subfamily M member 3 (TRPM3). Computer modeling using Molecular Operating Environment generated three-dimensional structures of TRPM3. Epiallopregnanolone sulfate (PM5S) concentrations were reduced in GDM (P < 0.05), in women with higher fasting plasma glucose (P < 0.010), and in early pregnancy samples from women who subsequently developed GDM with BMI ≥35 kg/m2 (P < 0.05). In islets, 50 µmol/L PM5S increased GSIS by at least twofold (P < 0.001); isosakuranetin (TRPM3 inhibitor) abolished this effect. PM5S increased calcium influx in TRPM3-expressing HEK293 cells. Computer modeling and docking showed identical positioning of PM5S to the natural ligand in TRPM3. PM5S increases GSIS and is reduced in GDM serum. The activation of GSIS by PM5S is mediated by TRPM3 in both mouse and human islets.


Asunto(s)
Diabetes Gestacional , Canales Catiónicos TRPM , Animales , Glucemia/metabolismo , Calcio/metabolismo , Femenino , Células HEK293 , Humanos , Insulina/metabolismo , Secreción de Insulina , Ratones , Embarazo , Progesterona , Sulfatos/metabolismo
18.
Faraday Discuss ; 232(0): 448-462, 2021 12 24.
Artículo en Inglés | MEDLINE | ID: mdl-34596638

RESUMEN

Antimicrobial resistance is becoming a serious burden for drug design. The challenges are in finding novel approaches for effectively targeting a number of different bacterial strains, and in delivering these to the site of action. We propose here a novel approach that exploits the assembly of antimicrobial peptidic units in nanocapsules that can penetrate and rupture the bacterial membrane. Additionally, the chemical versatility of the designed units can be tailored to specific targets and to the delivery of genetic material in the cell. The proposed design exploits a ß-annulus (sequence ITHVGGVGGSIMAPVAVSRQLVGS) triskelion unit from the Tomato Bushy Stunt Virus, able to self assemble in solution, and functionalised with antimicrobial sequences to form dodecahedral antimicrobial nanocapsules. The stability and the activity of the antimicrobial ß-annulus capsule is measured by molecular dynamics simulations in water and in the presence of model membranes.


Asunto(s)
Antiinfecciosos , Nanocápsulas , Antiinfecciosos/farmacología
19.
Wellcome Open Res ; 6: 56, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34604541

RESUMEN

Background: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) transmission occurs via airborne droplets and surface contamination. Titanium dioxide (TiO 2) coating of surfaces is a promising infection control measure, though to date has not been tested against SARS-CoV-2. Methods: Virus stability was evaluated on TiO 2- and TiO 2-Ag (Ti:Ag atomic ratio 1:0.04)-coated 45 x 45 mm ceramic tiles. After coating the tiles were stored for 2-4 months before use. We tested the stability of both SARS-CoV-2 Spike pseudotyped virions based on a lentiviral system, as well as fully infectious SARS-CoV-2 virus. For the former, tile surfaces were inoculated with SARS-CoV-2 spike pseudotyped HIV-1 luciferase virus. At intervals virus was recovered from surfaces and target cells infected. For live virus,  after illuminating tiles for 0-300 min virus was recovered from surfaces followed by infection of Vero E6 cells. % of infected cells was determined by flow cytometry detecting SARS-CoV-2 nucleocapsid protein 24 h post-infection. Results: After 1 h illumination the pseudotyped viral titre was decreased by four orders of magnitude. There was no significant difference between the TiO 2 and TiO 2-Ag coatings. Light alone had no significant effect on viral viability. For live SARS-CoV-2, virus was already significantly inactivated on the TiO 2 surfaces after 20 min illumination. After 5 h no detectable active virus remained. Significantly, SARS-CoV-2 on the untreated surface was still fully infectious at 5 h post-addition of virus. Overall, tiles coated with TiO 2 120 days previously were able to inactivate SARS-CoV-2 under ambient indoor lighting with 87% reduction in titres at 1h and complete loss by 5h exposure. Conclusions: In the context of emerging viral variants with increased transmissibility, TiO 2 coatings could be an important tool in containing SARS-CoV-2, particularly in health care facilities where nosocomial infection rates are high.

20.
Stem Cell Reports ; 16(11): 2628-2641, 2021 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-34678211

RESUMEN

Quantitative analysis of human induced pluripotent stem cell (iPSC) lines from healthy donors is a powerful tool for uncovering the relationship between genetic variants and cellular behavior. We previously identified rare, deleterious non-synonymous single nucleotide variants (nsSNVs) in cell adhesion genes that are associated with outlier iPSC phenotypes in the pluripotent state. Here, we generated micropatterned colonies of iPSCs to test whether nsSNVs influence patterning of radially ordered germ layers. Using a custom-built image analysis pipeline, we quantified the differentiation phenotypes of 13 iPSC lines that harbor nsSNVs in genes related to cell adhesion or germ layer development. All iPSC lines differentiated into the three germ layers; however, there was donor-specific variation in germ layer patterning. We identified one line that presented an outlier phenotype of expanded endodermal differentiation, which was associated with a nsSNV in ITGB1. Our study establishes a platform for investigating the impact of nsSNVs on differentiation.


Asunto(s)
Diferenciación Celular/genética , Endodermo/metabolismo , Células Madre Pluripotentes Inducidas/metabolismo , Integrina beta1/genética , Polimorfismo de Nucleótido Simple , Adhesión Celular/genética , Línea Celular , Endodermo/citología , Proteínas Fetales/genética , Proteínas Fetales/metabolismo , Perfilación de la Expresión Génica/métodos , Estratos Germinativos/citología , Estratos Germinativos/metabolismo , Humanos , Células Madre Pluripotentes Inducidas/citología , Fenotipo , Proteómica/métodos , Factores de Transcripción SOXB1/genética , Factores de Transcripción SOXB1/metabolismo , Factores de Transcripción SOXF/genética , Factores de Transcripción SOXF/metabolismo , Proteínas de Dominio T Box/genética , Proteínas de Dominio T Box/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...