Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Intervalo de año de publicación
1.
Preprint en Inglés | medRxiv | ID: ppmedrxiv-22274187

RESUMEN

Mutations in the viral genome of SARS-CoV-2 can impact the performance of molecular diagnostic assays. In some cases, such as S gene target failure, the impact can serve as a unique indicator of a particular SARS-CoV-2 variant and provide a method for rapid detection. Here we describe partial ORF1ab gene target failure (pOGTF) on the cobas(R) SARS-CoV-2 assays, defined by a [≥]2 thermocycles delay in detection of the ORF1ab gene compared to the E gene. We demonstrate that pOGTF is 97% sensitive and 99% specific for SARS-CoV-2 lineage BA.2.12.1, an emerging variant in the United States with spike L452Q and S704L mutations that may impact transmission, infectivity, and/or immune evasion. Increasing rates of pOGTF closely mirrored rates of BA.2.12.1 sequences uploaded to public databases, and, importantly increasing local rates of pOGTF also mirrored increasing overall test positivity. Use of pOGTF as a proxy for BA.2.12.1 provides faster tracking of the variant than whole-genome sequencing and can benefit laboratories without sequencing capabilities.

2.
Preprint en Inglés | bioRxiv | ID: ppbiorxiv-440801

RESUMEN

Rapid whole genome sequencing of SARS-CoV-2 has presented the ability to detect new emerging variants of concern in near real time. Here we report the genome of a virus isolated in Pennsylvania in March 2021 that was identified as lineage B.1.1.7 (VOC-202012/01) that also harbors the E484K spike mutation, which has been shown to promote "escape" from neutralizing antibodies in vitro. We compare this sequence to the only 5 other B.1.1.7+E484K genomes from Pennsylvania, all of which were isolated in mid March. Beginning in February 2021, only a small number (n=60) of isolates with this profile have been detected in the US, and only a total of 253 have been reported globally (first in the UK in December 2020). Comparative genomics of all currently available high coverage B.1.1.7+E484K genomes (n=235) available on GISAID suggested the existence of 7 distinct groups or clonal complexes (CC; as defined by GNUVID) bearing the E484K mutation raising the possibility of 7 independent acquisitions of the E484K spike mutation in each background. Phylogenetic analysis suggested the presence of at least 3 distinct clades of B.1.1.7+E484K circulating in the US, with the Pennsylvanian isolates belonging to two distinct clades. Increased genomic surveillance will be crucial for detection of emerging variants of concern that can escape natural and vaccine induced immunity.

3.
Preprint en Inglés | medRxiv | ID: ppmedrxiv-21254514

RESUMEN

RationaleViral infection of the respiratory tract can be associated with propagating effects on the airway microbiome, and microbiome dysbiosis may influence viral disease. ObjectiveTo define the respiratory tract microbiome in COVID-19 and relationship disease severity, systemic immunologic features, and outcomes. Methods and MeasurementsWe examined 507 oropharyngeal, nasopharyngeal and endotracheal samples from 83 hospitalized COVID-19 patients, along with non-COVID patients and healthy controls. Bacterial communities were interrogated using 16S rRNA gene sequencing, commensal DNA viruses Anelloviridae and Redondoviridae were quantified by qPCR, and immune features were characterized by lymphocyte/neutrophil (L/N) ratios and deep immune profiling of peripheral blood mononuclear cells (PBMC). Main ResultsCOVID-19 patients had upper respiratory microbiome dysbiosis, and greater change over time than critically ill patients without COVID-19. Diversity at the first time point correlated inversely with disease severity during hospitalization, and microbiome composition was associated with L/N ratios and PBMC profiles in blood. Intubated patients showed patient-specific and dynamic lung microbiome communities, with prominence of Staphylococcus. Anelloviridae and Redondoviridae showed more frequent colonization and higher titers in severe disease. Machine learning analysis demonstrated that integrated features of the microbiome at early sampling points had high power to discriminate ultimate level of COVID-19 severity. ConclusionsThe respiratory tract microbiome and commensal virome are disturbed in COVID-19, correlate with systemic immune parameters, and early microbiome features discriminate disease severity. Future studies should address clinical consequences of airway dysbiosis in COVID-19, possible use as biomarkers, and role of bacterial and viral taxa identified here in COVID-19 pathogenesis.

4.
Preprint en Inglés | medRxiv | ID: ppmedrxiv-21253847

RESUMEN

BackgroundLittle is known about the dynamics of SARS-CoV-2 antigen burden in respiratory samples in different patient populations at different stages of infection. Current rapid antigen tests cannot quantitate and track antigen dynamics with high sensitivity and specificity in respiratory samples. MethodsWe developed and validated an ultra-sensitive SARS-CoV-2 antigen assay with smartphone readout using the Microbubbling Digital Assay previously developed by our group, which is a platform that enables highly sensitive detection and quantitation of protein biomarkers. A computer vision-based algorithm was developed for microbubble smartphone image recognition and quantitation. A machine learning-based classifier was developed to classify the smartphone images based on detected microbubbles. Using this assay, we tracked antigen dynamics in serial swab samples from COVID patients hospitalized in ICU and immunocompromised COVID patients. ResultsThe limit of detection (LOD) of the Microbubbling SARS-CoV-2 Antigen Assay was 0.5 pg/mL (10.6 fM) recombinant nucleocapsid (N) antigen or 4000 copies/mL inactivated SARS-CoV-2 virus in nasopharyngeal (NP) swabs, comparable to many rRT-PCR methods. The assay had high analytical specificity towards SARS-CoV-2. Compared to EUA-approved rRT-PCR methods, the Microbubbling Antigen Assay demonstrated a positive percent agreement (PPA) of 97% (95% confidence interval (CI), 92-99%) in symptomatic individuals within 7 days of symptom onset and positive SARS-CoV-2 nucleic acid results, and a negative percent agreement (NPA) of 97% (95% CI, 94-100%) in symptomatic and asymptomatic individuals with negative nucleic acid results. Antigen positivity rate in NP swabs gradually decreased as days-after-symptom-onset increased, despite persistent nucleic acid positivity of the same samples. The computer vision and machine learning-based automatic microbubble image classifier could accurately identify positives and negatives, based on microbubble counts and sizes. Total microbubble volume, a potential marker of antigen burden, correlated inversely with Ct values and days-after-symptom-onset. Antigen was detected for longer periods of time in immunocompromised patients with hematologic malignancies, compared to immunocompetent individuals. Simultaneous detectable antigens and nucleic acids may indicate the presence of replicating viruses in patients with persistent infections. ConclusionsThe Microbubbling SARS-CoV-2 Antigen Assay enables sensitive and specific detection of acute infections, and quantitation and tracking of antigen dynamics in different patient populations at various stages of infection. With smartphone compatibility and automated image processing, the assay is well-positioned to be adapted for point-of-care diagnosis and to explore the clinical implications of antigen dynamics in future studies.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA