Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int J Pharm ; 657: 124132, 2024 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-38641019

RESUMEN

Targeting enzymes involved in lipid metabolism is increasingly recognized as a promising anticancer strategy. Efficient inhibition of diacylglycerol O-transferase 1 (DGAT1) can block fatty acid (FA) storage. This, in turn, triggers an increase in free polyunsaturated FA concentration, leading to peroxidation and ferroptosis. In this study, we report the development of a pH-sensitive peptide (pHLIP)-drug conjugate designed to selectively deliver DGAT1 inhibitors to cancer cells nested within the acidic microenvironment of tumors. We utilized two previously established pHLIP sequences for coupling with drugs. The study of DGAT1 conjugates in large unilamellar vesicles (LUVs) of different compositions did not reveal enhanced pH-dependent insertion compared to POPC LUVs. However, using in vitro 3D tumor spheroids, significant antiproliferative effects were observed upon exposure to pHLIP-T863 (DGAT1 inhibitor) conjugates, surpassing the inhibitory activity of T863 alone. In conclusion, our study provides the first evidence that pHLIP-based conjugates with DGAT1 inhibitors have the potential to specifically target the acidic compartment of tumors. Moreover, it sheds light on the limitations of LUV models in capturing the pH-dependency of such conjugates.


Asunto(s)
Antineoplásicos , Proliferación Celular , Diacilglicerol O-Acetiltransferasa , Diacilglicerol O-Acetiltransferasa/antagonistas & inhibidores , Humanos , Concentración de Iones de Hidrógeno , Proliferación Celular/efectos de los fármacos , Línea Celular Tumoral , Antineoplásicos/farmacología , Antineoplásicos/química , Antineoplásicos/administración & dosificación , Péptidos/química , Péptidos/farmacología , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/química , Esferoides Celulares/efectos de los fármacos , Microambiente Tumoral/efectos de los fármacos , Proteínas de la Membrana
2.
RSC Adv ; 14(8): 5492-5498, 2024 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-38352674

RESUMEN

In recent years, bioorthogonal uncaging reactions have been developed to proceed efficiently under physiological conditions. However, limited progress has been made in the development of protecting groups combining stability under physiological settings with the ability to be quickly removed via bioorthogonal catalysis. Herein, we present a new water-soluble coumarin-derived probe bearing an internal nucleophilic group capable of promoting Tsuji-Trost deallylation under palladium catalysis. This probe can be cleaved by a bioorthogonal palladium complex at a faster rate than the traditional probe, namely N-Alloc-7-amino-4-methylcoumarin. As the deallylation process proved to be efficient in mammalian cells, we envision that this probe may find applications in chemical biology, bioengineering, and medicine.

3.
J Immunother Cancer ; 11(6)2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37344101

RESUMEN

BACKGROUND: Indoleamine 2,3-dioxygenase 1 (IDO1) and tryptophan-dioxygenase (TDO) are enzymes catabolizing the essential amino acid tryptophan into kynurenine. Expression of these enzymes is frequently observed in advanced-stage cancers and is associated with poor disease prognosis and immune suppression. Mechanistically, the respective roles of tryptophan shortage and kynurenine production in suppressing immunity remain unclear. Kynurenine was proposed as an endogenous ligand for the aryl hydrocarbon receptor (AHR), which can regulate inflammation and immunity. However, controversy remains regarding the role of AHR in IDO1/TDO-mediated immune suppression, as well as the involvement of kynurenine. In this study, we aimed to clarify the link between IDO1/TDO expression, AHR pathway activation and immune suppression. METHODS: AHR expression and activation was analyzed by RT-qPCR and western blot analysis in cells engineered to express IDO1/TDO, or cultured in medium mimicking tryptophan catabolism by IDO1/TDO. In vitro differentiation of naïve CD4+ T cells into regulatory T cells (Tregs) was compared in T cells isolated from mice bearing different Ahr alleles or a knockout of Ahr, and cultured in medium with or without tryptophan and kynurenine. RESULTS: We confirmed that IDO1/TDO expression activated AHR in HEK-293-E cells, as measured by the induction of AHR target genes. Unexpectedly, AHR was also overexpressed on IDO1/TDO expression. AHR overexpression did not depend on kynurenine but was triggered by tryptophan deprivation. Multiple human tumor cell lines overexpressed AHR on tryptophan deprivation. AHR overexpression was not dependent on general control non-derepressible 2 (GCN2), and strongly sensitized the AHR pathway. As a result, kynurenine and other tryptophan catabolites, which are weak AHR agonists in normal conditions, strongly induced AHR target genes in tryptophan-depleted conditions. Tryptophan depletion also increased kynurenine uptake by increasing SLC7A5 (LAT1) expression in a GCN2-dependent manner. Tryptophan deprivation potentiated Treg differentiation from naïve CD4+ T cells isolated from mice bearing an AHR allele of weak affinity similar to the human AHR. CONCLUSIONS: Tryptophan deprivation sensitizes the AHR pathway by inducing AHR overexpression and increasing cellular kynurenine uptake. As a result, tryptophan catabolites such as kynurenine more potently activate AHR, and Treg differentiation is promoted. Our results propose a molecular explanation for the combined roles of tryptophan deprivation and kynurenine production in mediating IDO1/TDO-induced immune suppression.


Asunto(s)
Quinurenina , Triptófano , Humanos , Ratones , Animales , Quinurenina/metabolismo , Linfocitos T Reguladores/metabolismo , Receptores de Hidrocarburo de Aril/genética , Células HEK293
4.
Biochem Pharmacol ; 204: 115239, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36075462

RESUMEN

Ferroptosis, first coined in 2012, is an iron-dependent regulated cell death (RCD) characterized by the accumulation of lipid peroxides to toxic levels. This mechanism is currently being evaluated as a target for a variety of diseases offering new opportunities for drug design and development. Recent reports uncovered acyl-CoA synthetase long-chain 4 (ACSL4) as a critical contributor to ferroptosis execution. Therefore, ACSL4 inhibitors are emerging as attractive anti-ferroptotic agents. Herein, we developed a robust screening cascade with orthogonal biophysical and biochemical techniques to identify original human ACSL4 inhibitors. By screening an FDA-approved drug library, we were able to identify and validate new inhibitors with micromolar-range activities against ACSL4. With an IC50 of 280 nM against hACSL4, antifungal agent sertaconazole is to our knowledge, the most potent ACSL4 inhibitor identified so far. In addition, sertaconazole significantly reduced lipid peroxidation and ferroptosis in human differentiated dopaminergic neurons (Lund human mesencephalic LUHMES cells), demonstrating that it is a valuable chemical tool for further investigating the role of ACSL4 in ferroptosis. This study highlights the phenethyl-imidazole scaffold as a novel and promising starting point for the development of anti-ferroptotic agents targeting ACSL4.


Asunto(s)
Ferroptosis , Antifúngicos/farmacología , Coenzima A , Coenzima A Ligasas/metabolismo , Reposicionamiento de Medicamentos , Humanos , Imidazoles , Hierro , Peróxidos Lipídicos , Tiofenos
5.
Int J Pharm ; 624: 122041, 2022 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-35868479

RESUMEN

Targeting enzymes involved in tumor metabolism is a promising way to tackle cancer progression. The inhibition of carnitine palmitoyltransferase 1 (CPT1) by etomoxir (Eto) efficiently slows down the growth of various cancers. Unfortunately, the clinical use of this drug was abandoned because of hepatotoxic effects. We report the development of pH-sensitive peptide (pHLIP)-drug conjugate to deliver Eto selectively to cancer cells exposed to acidic microenvironmental conditions. A newly designed sequence for the pHLIP peptide, named pHLIPd, was compared with a previously published reference pHLIP peptide, named pHLIPr. We showed that the conjugate between pHLIPd and Eto has a better pH-dependent insertion and structuration than the pHLIPr-based conjugate inside POPC vesicles. We observed antiproliferative effects when applied on acid-adapted cancer cells, reaching a larger inhibitory activity than Eto alone. In conclusion, this study brings the first evidence that pHLIP-based conjugates with a CPT1 inhibitor has the potential to specifically target the tumor acidic compartment and exert anticancer effects while sparing healthy tissues.


Asunto(s)
Acidosis , Neoplasias , Carnitina O-Palmitoiltransferasa , Compuestos Epoxi , Humanos , Concentración de Iones de Hidrógeno , Neoplasias/tratamiento farmacológico , Péptidos/farmacología
6.
Acta Crystallogr E Crystallogr Commun ; 78(Pt 4): 418-424, 2022 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-35492280

RESUMEN

Recently, inter-est in the isosteric replacement of a nitro-gen atom to selenium, sulfur or oxygen atoms has been highlighted in the design of potential inhibitors for cancer research. In this context, the structures of 5-(1H-indol-3-yl)-2,1,3-benzotriazole derivatives [5-(1H-indol-3-yl)-2,1,3-benzo-thia-diazole (bS, C14H9N3S) and 5-(1H-indol-3-yl)-2,1,3-benzoxa-diazole (bO, C14H9N3O)], as well as a synthesis inter-mediate of the selenated bioisostere [5-[1-(benzensulfon-yl)-1H-indol-3-yl]-2,1,3-benzoselena-diazole (p-bSe, C20H13N3O2SSe)] were determined using single-crystal X-ray diffraction (SCXRD) analyses. Despite being analogues, different crystal packing, torsion angles and supra-molecular features were observed, depending on the substitution of the central atoms of the benzotriazole. In particular, chalcogen inter-actions were described in the case of p-bSe and not in the bS and bO derivatives. An investigation by ab initio computational methods was therefore conducted to understand the effect of the substitution on the ability to form chalcogen bonds and the flexibility of the compounds.

7.
Eur J Med Chem ; 230: 114102, 2022 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-35074589

RESUMEN

Lactate dehydrogenases (LDHs) are tetrameric enzymes of therapeutic relevance for cancer therapy due to their important implications in cancer cell metabolism. LDH active site inhibition suffers from different drawbacks due to several features such as high cellular concentration and a shared active site among the dehydrogenase family. Conversely, targeting the LDH oligomeric state is an exciting strategy that could provide a suitable alternative to active-site inhibition. In the present study, we developed a biophysical screening cascade to probe the LDHs tetrameric interface. Using nanoscale differential fluorimetry (nanoDSF) as a primary screening method, we identified a series of hits that destabilize the tetrameric protein. From this primary screening, we validated selected hits using saturation transfer difference nuclear magnetic resonance (STD NMR) and microscale thermophoresis (MST) as a combination of orthogonal biophysical techniques. Finally, we characterized the validated hits and demonstrated that they specifically interact at the tetrameric interface of LDH-1 and LDH-5 and can inhibit the LDH tetramerization process. Overall, this work provides a convenient method for screening ligands at the LDH tetrameric interface and has identified promising hits suitable for further optimization. We believe that this biophysical screening cascade, especially the use of (nano)DSF, could be extended to other homomeric proteins.


Asunto(s)
Lactato Deshidrogenasas , Fluorometría , Lactato Deshidrogenasas/antagonistas & inhibidores , Ligandos , Espectroscopía de Resonancia Magnética
8.
J Cyst Fibros ; 21(3): 407-415, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-34489187

RESUMEN

OBJECTIVES: Two CFTR-dependent ß-adrenergic sweat rate tests applying intradermal drug injections were reported to better define diagnosis and efficacy of CFTR-directed therapies. The aim of this work was to develop and test a needle-free image-based test and to provide an accurate analysis of the responses. METHODS: The modified method was conducted by applying two successive iontophoresis sessions using the Macroduct device. Efficiency of drug delivery was tested by evaporimetry. Cholinergically stimulated sweating was evoked by pilocarpine iontophoresis. ß-adrenergically stimulated sweating was obtained by iontophoresis of isoproterenol and aminophylline in the presence of atropine and ascorbic acid. A nonlinear mixed-effects (NLME) approach was applied to model volumes of sweat and subject-specific effects displaying inter- and intra-subject variability. RESULTS: Iontophoresis provided successful transdermal delivery of all drugs, including almost neutral isoproterenol and aminophylline. Pilocarpine was used at a concentration ∼130-times lower than that used in the classical Gibson and Cooke sweat test. Addition of ascorbic acid lowered the pH of the solution, made it stable, prevented isoproterenol degradation and promoted drug iontophoresis. Maximal secretory capacity and kinetic rate of ß-adrenergic responses were blunted in CF. A cutoff of 5.2 minutes for ET50, the time to reach the half maximal secretion, discriminated CF from controls with a 100% sensitivity and specificity. Heterozygous showed an apparently reduced kinetic rate and a preserved secretory capacity. CONCLUSION: We tested a safe, well-tolerated needle-free image-based sweat test potentially applicable in children. Modelling responses by NLME allowed evaluating metrics of CFTR-dependent effects reflecting secretory capacity and kinetic rate.


Asunto(s)
Fibrosis Quística , Sudor , Adrenérgicos/metabolismo , Aminofilina/metabolismo , Ácido Ascórbico/metabolismo , Niño , Cloruros/análisis , Fibrosis Quística/diagnóstico , Regulador de Conductancia de Transmembrana de Fibrosis Quística/metabolismo , Humanos , Iontoforesis , Isoproterenol/farmacología , Pilocarpina/metabolismo , Sudor/química
9.
Eur J Med Chem ; 227: 113892, 2022 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-34678572

RESUMEN

Selenium is an underexplored element that can be used for bioisosteric replacement of lower molecular weight chalcogens such as oxygen and sulfur. More studies regarding the impact of selenium substitution in different chemical scaffolds are needed to fully grasp this element's potential. Herein, we decided to evaluate the impact of selenium incorporation in a series of tryptophan 2,3-dioxygenase (TDO2) inhibitors, a target of interest in cancer immunotherapy. First, we synthesized the different chalcogen isosteres through Suzuki-Miyaura type coupling. Next, we evaluated the isosteres' affinity and selectivity for TDO2, as well as their lipophilicity, microsomal stability and cellular toxicity on TDO2-expressing cell lines. Overall, chalcogen isosteric replacements did not disturb the on-target activity but allowed for a modulation of the compounds' lipophilicity, toxicity and stability profiles. The present work contributes to our understanding of oxygen/sulfur/selenium isostery towards increasing structural options in medicinal chemistry for the development of novel and distinctive drug candidates.


Asunto(s)
Calcógenos/farmacología , Inhibidores Enzimáticos/farmacología , Compuestos Heterocíclicos/farmacología , Selenio/farmacología , Triptófano Oxigenasa/antagonistas & inhibidores , Calcógenos/química , Relación Dosis-Respuesta a Droga , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/química , Compuestos Heterocíclicos/síntesis química , Compuestos Heterocíclicos/química , Humanos , Estructura Molecular , Oxígeno/química , Oxígeno/farmacología , Selenio/química , Estereoisomerismo , Relación Estructura-Actividad , Azufre/química , Azufre/farmacología , Triptófano Oxigenasa/metabolismo
10.
Acta Biomater ; 140: 561-572, 2022 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-34923097

RESUMEN

Nanoparticle-based oral drug delivery systems have the potential to target inflamed regions in the gastrointestinal tract by specifically accumulating at disrupted colonic epithelium. But, delivery of intact protein drugs at the targeted site is a major challenge due to the harsh gastrointestinal environment and the protective mucus layer. Biocompatible nanoparticles engineered to target the inflamed colonic tissue and efficiently penetrate the mucosal layer can provide a promising approach for orally delivering monoclonal antibodies to treat inflammatory bowel disease. The study aims to develop mucus-penetrating nanoparticles composed of poly(lactic-co-glycolic acid, PLGA) polymers with two different polyethylene glycol (PEG) chain lengths (2 kDa and 5kDa) to encapsulate monoclonal antibody against tumor necrosis factor-α (TNF-α). The impact of different PEG chain lengths on the efficacy of the nanosystems was evaluated in vitro, ex vivo, and in vivo. Both PLGA-PEG2k and PLGA-PEG5k nanoparticles successfully encapsulated the antibody and significantly reduced TNF-α secretion from activated macrophages and intestinal epithelial cells. However, only antibody-loaded PLGA-PEG2k nanoparticles were able to alleviate the experimental acute colitis in mice demonstrated by improved colon weight/length ratio, histological score, and reduced tissue-associated myeloperoxidase activity and expression of proinflammatory cytokine TNF-α levels compared with the control group. The results suggest that despite having no significant differences in the in vitro cell-based assays, PEG chain length has a significant impact on the in vivo performance of the mucus penetrating nanoparticles. Overall, PLGA-PEG2k nanoparticles were presented as a promising oral delivery system for targeted antibody delivery to treat inflammatory bowel disease. STATEMENT OF SIGNIFICANCE: There is an unmet therapeutic need for oral drug delivery systems for safe and effective antibody therapy of inflammatory bowel disease. Therefore, we have developed PEGylated PLGA-based nanoparticulate drug delivery systems for oral targeted delivery of anti-TNF-α antibody as a potential alternative treatment strategy. The PEG chain length did not affect encapsulation efficiency or interaction with mucin in vitro but resulted in differences in in vitro release profile and in vivo efficacy study. We demonstrated the superiority of anti-TNF-α mAb-PLGA-PEG2k over mAb-PLGA-PEG5k nanoparticles to effectively exhibit anti-inflammatory responses in an acute murine colitis model. These nanoparticle-based formulations may be adjusted to encapsulate other drugs that could be applied to a number of disorders at different mucosal surfaces.


Asunto(s)
Colitis , Enfermedades Inflamatorias del Intestino , Nanopartículas , Animales , Colitis/tratamiento farmacológico , Sistemas de Liberación de Medicamentos , Enfermedades Inflamatorias del Intestino/tratamiento farmacológico , Ratones , Sistema de Administración de Fármacos con Nanopartículas , Polietilenglicoles/metabolismo , Inhibidores del Factor de Necrosis Tumoral
11.
Int J Mol Sci ; 22(21)2021 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-34769368

RESUMEN

Glioblastoma represents the highest grade of brain tumors. Despite maximal resection surgery associated with radiotherapy and concomitant followed by adjuvant chemotherapy with temozolomide (TMZ), patients have a very poor prognosis due to the rapid recurrence and the acquisition of resistance to TMZ. Here, initially considering that TMZ is a prodrug whose activation is pH-dependent, we explored the contribution of glioblastoma cell metabolism to TMZ resistance. Using isogenic TMZ-sensitive and TMZ-resistant human glioblastoma cells, we report that the expression of O6-methylguanine DNA methyltransferase (MGMT), which is known to repair TMZ-induced DNA methylation, does not primarily account for TMZ resistance. Rather, fitter mitochondria in TMZ-resistant glioblastoma cells are a direct cause of chemoresistance that can be targeted by inhibiting oxidative phosphorylation and/or autophagy/mitophagy. Unexpectedly, we found that PARP inhibitor olaparib, but not talazoparib, is also a mitochondrial Complex I inhibitor. Hence, we propose that the anticancer activities of olaparib in glioblastoma and other cancer types combine DNA repair inhibition and impairment of cancer cell respiration.


Asunto(s)
Neoplasias Encefálicas/tratamiento farmacológico , Resistencia a Antineoplásicos/efectos de los fármacos , Glioblastoma/tratamiento farmacológico , Ftalazinas/farmacología , Piperazinas/farmacología , Temozolomida/farmacología , Antineoplásicos Alquilantes/farmacología , Apoptosis , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patología , Proliferación Celular , Glioblastoma/metabolismo , Glioblastoma/patología , Humanos , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Células Tumorales Cultivadas
12.
J Med Chem ; 64(15): 10967-10980, 2021 08 12.
Artículo en Inglés | MEDLINE | ID: mdl-34338527

RESUMEN

Tryptophan 2,3-dioxygenase (TDO2) is a heme-containing enzyme constitutively expressed at high concentrations in the liver and responsible for l-tryptophan (l-Trp) homeostasis. Expression of TDO2 in cancer cells results in the inhibition of immune-mediated tumor rejection due to an enhancement of l-Trp catabolism via the kynurenine pathway. In the study herein, we disclose a new 6-(1H-indol-3-yl)-benzotriazole scaffold of TDO2 inhibitors developed through rational design, starting from existing inhibitors. Rigidification of the initial scaffold led to the synthesis of stable compounds displaying a nanomolar cellular potency and a better understanding of the structural modulations that can be accommodated inside the active site of hTDO2.


Asunto(s)
Diseño de Fármacos , Inhibidores Enzimáticos/farmacología , Triazoles/farmacología , Triptófano Oxigenasa/antagonistas & inhibidores , Relación Dosis-Respuesta a Droga , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/química , Humanos , Simulación del Acoplamiento Molecular , Estructura Molecular , Relación Estructura-Actividad , Triazoles/síntesis química , Triazoles/química , Triptófano Oxigenasa/metabolismo , Células Tumorales Cultivadas
14.
J Biol Chem ; 296: 100699, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33895133

RESUMEN

N-acetylneuraminate (Neu5Ac), an abundant sugar present in glycans in vertebrates and some bacteria, can be used as an energy source by several prokaryotes, including Escherichia coli. In solution, more than 99% of Neu5Ac is in cyclic form (≈92% beta-anomer and ≈7% alpha-anomer), whereas <0.5% is in the open form. The aldolase that initiates Neu5Ac metabolism in E. coli, NanA, has been reported to act on the alpha-anomer. Surprisingly, when we performed this reaction at pH 6 to minimize spontaneous anomerization, we found NanA and its human homolog NPL preferentially metabolize the open form of this substrate. We tested whether the E. coli Neu5Ac anomerase NanM could promote turnover, finding it stimulated the utilization of both beta and alpha-anomers by NanA in vitro. However, NanM is localized in the periplasmic space and cannot facilitate Neu5Ac metabolism by NanA in the cytoplasm in vivo. We discovered that YhcH, a cytoplasmic protein encoded by many Neu5Ac catabolic operons and belonging to a protein family of unknown function (DUF386), also facilitated Neu5Ac utilization by NanA and NPL and displayed Neu5Ac anomerase activity in vitro. YhcH contains Zn, and its accelerating effect on the aldolase reaction was inhibited by metal chelators. Remarkably, several transition metals accelerated Neu5Ac anomerization in the absence of enzyme. Experiments with E. coli mutants indicated that YhcH expression provides a selective advantage for growth on Neu5Ac. In conclusion, YhcH plays the unprecedented role of providing an aldolase with the preferred unstable open form of its substrate.


Asunto(s)
Fructosa-Bifosfato Aldolasa/metabolismo , Ácido N-Acetilneuramínico/metabolismo , Escherichia coli/enzimología , Fructosa-Bifosfato Aldolasa/química , Modelos Moleculares , Ácido N-Acetilneuramínico/química , Periplasma/metabolismo , Conformación Proteica , Transporte de Proteínas , Estereoisomerismo
15.
J Biol Chem ; 296: 100422, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33607109

RESUMEN

Despite being initially regarded as a metabolic waste product, lactate is now considered to serve as a primary fuel for the tricarboxylic acid cycle in cancer cells. At the core of lactate metabolism, lactate dehydrogenases (LDHs) catalyze the interconversion of lactate to pyruvate and as such represent promising targets in cancer therapy. However, direct inhibition of the LDH active site is challenging from physicochemical and selectivity standpoints. However, LDHs are obligate tetramers. Thus, targeting the LDH tetrameric interface has emerged as an appealing strategy. In this work, we examine a dimeric construct of truncated human LDH to search for new druggable sites. We report the identification and characterization of a new cluster of interactions in the LDH tetrameric interface. Using nanoscale differential scanning fluorimetry, chemical denaturation, and mass photometry, we identified several residues (E62, D65, L71, and F72) essential for LDH tetrameric stability. Moreover, we report a family of peptide ligands based on this cluster of interactions. We next demonstrated these ligands to destabilize tetrameric LDHs through binding to this new tetrameric interface using nanoscale differential scanning fluorimetry, NMR water-ligand observed via gradient spectroscopy, and microscale thermophoresis. Altogether, this work provides new insights on the LDH tetrameric interface as well as valuable pharmacological tools for the development of LDH tetramer disruptors.


Asunto(s)
Mapeo Epitopo/métodos , L-Lactato Deshidrogenasa/metabolismo , Humanos , L-Lactato Deshidrogenasa/genética , L-Lactato Deshidrogenasa/fisiología , Lactato Deshidrogenasas/metabolismo , Ácido Láctico/metabolismo , Ligandos , Imagen por Resonancia Magnética/métodos , Péptidos/metabolismo
16.
Drug Discov Today ; 26(5): 1148-1163, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33548462

RESUMEN

Protein self-association is a universal phenomenon essential for stability and molecular recognition. Disrupting constitutive homomers constitutes an original and emerging strategy in drug design. Inhibition of homomeric proteins can be achieved through direct complex disruption, subunit intercalation, or by promoting inactive oligomeric states. Targeting self-interaction grants several advantages over active site inhibition because of the stimulation of protein degradation, the enhancement of selectivity, substoichiometric inhibition, and by-pass of compensatory mechanisms. This new landscape in protein inhibition is driven by the development of biophysical and biochemical tools suited for the study of homomeric proteins, such as differential scanning fluorimetry (DSF), native mass spectrometry (MS), Förster resonance energy transfer (FRET) spectroscopy, 2D nuclear magnetic resonance (NMR), and X-ray crystallography. In this review, we discuss the different aspects of this new paradigm in drug design.


Asunto(s)
Diseño de Fármacos , Terapia Molecular Dirigida , Proteínas/metabolismo , Dominio Catalítico , Humanos , Unión Proteica , Proteínas/antagonistas & inhibidores
17.
Expert Opin Ther Pat ; 31(7): 597-608, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33571419

RESUMEN

Introduction:The phosphoglycerate dehydrogenase (PHGDH), a metabolic enzyme involved in the serine synthetic pathway (SSP), appears to play a central role in supporting cancer growth and proliferation. PHGDH is a dehydrogenase whose expression in cancers was first demonstrated in 2010. Because its silencing allows a significant reduction in tumor proliferation, it appears to be a promising target in the development of new anti-cancer agents.Areas covered: In this review, we will detail PHGDH inhibitors that were reported since 2015. These compounds will be ranked according to their chemical class and their site of action. Representative examples of each series will be presented as well as their inhibitory potency in vitro and/or in vivo. Finally, their most significant biological effects will be detailed.Expert opinion: Currently, and despite significant efforts, the search for PHGDH inhibitors has not yet led to the development of compounds that can be used therapeutically. The available inhibitors have either too weak inhibitory potency or limited selectivity. Therefore, it seems crucial, given the importance of this enzyme in the progression of cancer but also in other pathologies, to pursue the development of new chemical series.


Asunto(s)
Antineoplásicos/farmacología , Neoplasias/tratamiento farmacológico , Fosfoglicerato-Deshidrogenasa/antagonistas & inhibidores , Animales , Desarrollo de Medicamentos , Inhibidores Enzimáticos/farmacología , Humanos , Neoplasias/enzimología , Neoplasias/patología , Patentes como Asunto , Fosfoglicerato-Deshidrogenasa/metabolismo , Serina/metabolismo
18.
Molecules ; 26(2)2021 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-33477510

RESUMEN

The serine biosynthetic pathway is a key element contributing to tumor proliferation. In recent years, targeting of phosphoglycerate dehydrogenase (PHGDH), the first enzyme of this pathway, intensified and revealed to be a promising strategy to develop new anticancer drugs. Among attractive PHGDH inhibitors are the α-ketothioamides. In previous work, we have demonstrated their efficacy in the inhibition of PHGDH in vitro and in cellulo. However, the precise site of action of this series, which would help the rational design of new inhibitors, remained undefined. In the present study, the detailed mechanism-of-action of a representative α-ketothioamide inhibitor is reported using several complementary experimental techniques. Strikingly, our work led to the identification of an allosteric site on PHGDH that can be targeted for drug development. Using mass spectrometry experiments and an original α-ketothioamide diazirine-based photoaffinity probe, we identified the 523Q-533F sequence on the ACT regulatory domain of PHGDH as the binding site of α-ketothioamides. Mutagenesis experiments further documented the specificity of our compound at this allosteric site. Our results thus pave the way for the development of new anticancer drugs using a completely novel mechanism-of-action.


Asunto(s)
Diazometano/química , Inhibidores Enzimáticos/farmacología , Espectrometría de Masas/métodos , Fosfoglicerato-Deshidrogenasa/antagonistas & inhibidores , Fosfoglicerato-Deshidrogenasa/metabolismo , Sitio Alostérico , Aspartato Quinasa/química , Aspartato Quinasa/metabolismo , Sitios de Unión , Corismato Mutasa/química , Corismato Mutasa/metabolismo , Humanos , Estructura Molecular , Dominios Proteicos , Relación Estructura-Actividad
19.
Eur J Med Chem ; 200: 112444, 2020 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-32497961

RESUMEN

d-Alanyl-d-alanine ligase (Ddl) is a validated and attractive target among the bacterial enzymes involved in peptidoglycan biosynthesis. In the present work, we investigated the pharmacomodulations of the benzoylthiosemicarbazide scaffold to identify new Ddl inhibitors with antibacterial potency. Five novel series of thiosemicarbazide analogues, 1,2,4-thiotriazole-3-thiones, 1,3,4-thiadiazoles, phenylthiosemicarbazones, diacylthiosemicarbazides and thioureas were synthesized via straightforward procedures, then tested against Ddl and on susceptible or resistant bacterial strains. Among these, the thiosemicarbazone and thiotriazole were identified as the most promising scaffolds with Ddl inhibition potency in the micromolar range. Antimicrobial evaluation of salicylaldehyde-4(N)-(3,4-dichlorophenyl) thiosemicarbazone 33, one of the best compounds in our study, revealed interesting antimicrobial activities with values of 3.12-6.25 µM (1.06-2.12 µg/mL) against VRE strains and 12.5-25.0 µM (4.25-8.50 µg/mL) towards MRSA and VRSA strains. A detailed mechanistic study was conducted on the Ddl inhibitors 4-(3,4-dichlorophenyl)-5-(2-hydroxyphenyl)-2,4-dihydro-3H-1,2,4-triazole-3-thione 20 and compound 33, and revealed a bactericidal effect at 5 × MIC concentration after 7 h and 24 h, respectively, and a bacteriostatic effect at 1 × MIC or 2 × MIC without any sign of bacterial membrane disruption at these lower concentrations. Finally, 20 and 33 were proved to target Ddl in bacterio via intracellular LC-MS dosage of d-Ala, l-Ala and d-Ala-d-Ala. Although, at this stage, our results indicate that other mechanisms might be involved to explain the antimicrobial potency of our compounds, their ability to inhibit the growth of strains resistant to usual antibiotics, as well as strains that express alternative ligases, sets the stage for the development of new antimicrobial agents potentially less sensitive to resistance mechanisms.


Asunto(s)
Antibacterianos/farmacología , Inhibidores Enzimáticos/farmacología , Escherichia/efectos de los fármacos , Péptido Sintasas/antagonistas & inhibidores , Staphylococcus aureus/efectos de los fármacos , Antibacterianos/síntesis química , Antibacterianos/química , Relación Dosis-Respuesta a Droga , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/química , Pruebas de Sensibilidad Microbiana , Estructura Molecular , Péptido Sintasas/metabolismo , Staphylococcus aureus/enzimología , Relación Estructura-Actividad
20.
Biosci Rep ; 40(6)2020 06 26.
Artículo en Inglés | MEDLINE | ID: mdl-32542330

RESUMEN

Homologues of the putative dehydrogenase YjhC are found in operons involved in the metabolism of N-acetylneuraminate (Neu5Ac) or related compounds. We observed that purified recombinant YjhC forms Neu5Ac from two dehydrated forms of this compound, 2,7-anhydro-N-acetylneuraminate (2,7-AN) and 2-deoxy-2,3-didehydro-N-acetylneuraminate (2,3-EN) that are produced during the degradation of sialoconjugates by some sialidases. The conversion of 2,7-AN into Neu5Ac is reversible and reaches its equilibrium when the ratio of 2,7-AN to Neu5Ac is ≈1/6. The conversion of 2,3-EN is irreversible, leading to a mixture of Neu5Ac and 2,7-AN. NMR analysis of the reaction catalysed by YjhC on 2,3-EN indicated that Neu5Ac was produced as the α-anomer. All conversions require NAD+ as a cofactor, which is regenerated in the reaction. They appear to involve the formation of keto (presumably 4-keto) intermediates of 2,7-AN, 2,3-EN and Neu5Ac, which were detected by liquid chromatography-mass spectrometry (LC-MS). The proposed reaction mechanism is reminiscent of the one catalysed by family 4 ß-glycosidases, which also use NAD+ as a cofactor. Both 2,7-AN and 2,3-EN support the growth of Escherichia coli provided the repressor NanR, which negatively controls the expression of the yjhBC operons, has been inactivated. Inactivation of either YjhC or YjhB in NanR-deficient cells prevents the growth on 2,7-AN and 2,3-EN. This confirms the role of YjhC in 2,7-AN and 2,3-EN metabolism and indicates that transport of 2,7-AN and 2,3-EN is carried out by YjhB, which is homologous to the Neu5Ac transporter NanT.


Asunto(s)
Proteínas de Escherichia coli/metabolismo , Escherichia coli/enzimología , Mucolipidosis/metabolismo , Ácido N-Acetilneuramínico/metabolismo , Oxidorreductasas/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Escherichia coli/genética , Escherichia coli/crecimiento & desarrollo , Proteínas de Escherichia coli/genética , Cinética , Proteínas de Transporte de Membrana/genética , Proteínas de Transporte de Membrana/metabolismo , NAD/metabolismo , Oxidorreductasas/genética , Especificidad por Sustrato
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...