Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 12(1): 5524, 2022 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-35365734

RESUMEN

Carbonation of alkali activated materials is one of the main deteriorations affecting their durability. However, current understanding of the structural alteration of these materials exposed to an environment inducing carbonation at the nano/micro scale remains limited. This study examined the evolution of phase assemblages of alkali activated slag mortars subjected to accelerated carbonation (1% CO2, 60% relative humidity, up to 28 day carbonation) using XRD, FTIR and 29Si, 27Al, and 23Na MAS NMR. Samples with three water to binder (w/b) ratios (0.35, 0.45, and 0.55) were investigated. The results show that the phase assemblages mainly consisted of C-A-S-H, a disordered remnant aluminosilicate binder, and a minor hydrotalcite as a secondary product. Upon carbonation, calcium carbonate is mainly formed as the vaterite polymorph, while no sodium carbonate is found after carbonation as commonly reported. Sodium acts primarily as a charge balancing ion without producing sodium carbonate as a final carbonation product in the 28-day carbonated materials. The C-A-S-H structure becomes more cross-linked due to the decalcification of this phase as evidenced by the appearance of Q4 groups, which replace the Q1 and Q2 groups as observed in the 29Si MAS NMR spectra, and the dominance of Al(IV) in 27Al MAS NMR. Especially, unlike cementitious materials, the influence of w/b ratio on the crystalline phase formation and structure of C-A-S-H in the alkali activated mortars before and after carbonation is limited.

2.
Mater Struct ; 55(3): 99, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35401024

RESUMEN

Many (inter)national standards exist to evaluate the resistance of mortar and concrete to carbonation. When a carbonation coefficient is used for performance comparison of mixtures or service life prediction, the applied boundary conditions during curing, preconditioning and carbonation play a crucial role, specifically when using latent hydraulic or pozzolanic supplementary cementitious materials (SCMs). An extensive interlaboratory test (ILT) with twenty two participating laboratories was set up in the framework of RILEM TC 281-CCC 'Carbonation of Concrete with SCMs'. The carbonation depths and coefficients determined by following several (inter)national standards for three cement types (CEM I, CEM II/B-V, CEM III/B) both on mortar and concrete scale were statistically compared. The outcomes of this study showed that the carbonation rate based on the carbonation depths after 91 days exposure, compared to 56 days or less exposure duration, best approximates the slope of the linear regression and those 91 days carbonation depths can therefore be considered as a good estimate of the potential resistance to carbonation. All standards evaluated in this study ranked the three cement types in the same order of carbonation resistance. Unfortunately, large variations within and between laboratories complicate to draw clear conclusions regarding the effect of sample pre-conditioning and carbonation exposure conditions on the carbonation performance of the specimens tested. Nevertheless, it was identified that fresh and hardened state properties alone cannot be used to infer carbonation resistance of the mortars or concretes tested. It was also found that sealed curing results in larger carbonation depths compared to water curing. However, when water curing was reduced from 28 to 3 or 7 days, higher carbonation depths compared to sealed curing were observed. This increase is more pronounced for CEM I compared to CEM III mixes. The variation between laboratories is larger than the potential effect of raising the CO2 concentration from 1 to 4%. Finally, concrete, for which the aggregate-to-cement factor was increased by 1.79 in comparison with mortar, had a carbonation coefficient 1.18 times the one of mortar. Supplementary Information: The online version contains supplementary material available at 10.1617/s11527-022-01927-7.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...