Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Ecol Evol ; 4(4): 652-658, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32152530

RESUMEN

Only recently have we begun to understand the ecological and evolutionary effects of urbanization on species, with studies revealing drastic impacts on community composition, gene flow, behaviour, morphology and physiology. However, our understanding of how adaptive evolution allows species to persist, and even thrive, in urban landscapes is still nascent. Here, we examine phenotypic, genomic and regulatory impacts of urbanization on a widespread lizard, the Puerto Rican crested anole (Anolis cristatellus). We find that urban lizards endure higher environmental temperatures and display greater heat tolerance than their forest counterparts. A single non-synonymous polymorphism within a protein synthesis gene (RARS) is associated with heat tolerance plasticity within urban heat islands and displays parallel signatures of selection in cities. Additionally, we identify groups of differentially expressed genes between habitats showing elevated genetic divergence in multiple urban-forest comparisons. These genes display evidence of adaptive regulatory evolution within cities and disproportionately cluster within regulatory modules associated with heat tolerance. This study provides evidence of temperature-mediated selection in urban heat islands with repeatable impacts on physiological evolution at multiple levels of biological hierarchy.


Asunto(s)
Lagartos , Animales , Ciudades , Calor , Islas , Puerto Rico
2.
Proc Biol Sci ; 285(1880)2018 06 13.
Artículo en Inglés | MEDLINE | ID: mdl-29875296

RESUMEN

Urban habitats are drastically modified from their natural state, creating unique challenges and selection pressures for organisms that reside in them. We compared locomotor performance of Anolis lizards from urban and forest habitats on tracks differing in angle and substrate, and found that using artificial substrates came at a cost: lizards ran substantially slower and frequently lost traction on man-made surfaces compared to bark. We found that various morphological traits were positively correlated with sprint speed and that these same traits were significantly larger in urban compared to forest lizards. We found that urban lizards ran faster on both man-made and natural surfaces, suggesting similar mechanisms improve locomotor performance on both classes of substrate. Thus, lizards in urban areas may be under selection to run faster on all flat surfaces, while forest lizards face competing demands of running, jumping and clinging to narrow perches. Novel locomotor challenges posed by urban habitats likely have fitness consequences for lizards that cannot effectively use man-made surfaces, providing a mechanistic basis for observed phenotypic shifts in urban populations of this species.


Asunto(s)
Evolución Biológica , Ecosistema , Lagartos/anatomía & histología , Lagartos/fisiología , Locomoción , Animales , Ciudades , Bosques , Masculino , Puerto Rico , Especificidad de la Especie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...