Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Neurosci ; 17: 1216653, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37662110

RESUMEN

Introduction: SLC6A1 is one of the most common monogenic causes of epilepsy and is a well-established cause of neurodevelopmental disorders. SLC6A1-neurodevelopmental disorders have a consistent phenotype of mild to severe intellectual disability (ID), epilepsy, language delay and behavioral disorders. This phenotypic description is mainly based on knowledge from the pediatric population. Method: Here, we sought to describe patients with SLC6A1 variants and age above 18 years through the ascertainment of published and unpublished patients. Unpublished patients were ascertained through international collaborations, while previously published patients were collected through a literature search. Results: A total of 15 adult patients with SLC6A1 variants were included. 9/13 patients had moderate to severe ID (data not available in two). Epilepsy was prevalent (11/15) with seizure types such as absence, myoclonic, atonic, and tonic-clonic seizures. Epilepsy was refractory in 7/11, while four patients were seizure free with lamotrigine, valproate, or lamotrigine in combination with valproate. Language development was severely impaired in five patients. Behavioral disorders were reported in and mainly consisted of autism spectrum disorders and aggressive behavior. Schizophrenia was not reported in any of the patients. Discussion: The phenotype displayed in the adult patients presented here resembled that of the pediatric cohort with ID, epilepsy, and behavioral disturbances, indicating that the phenotype of SLC6A1-NDD is consistent over time. Seizures were refractory in >60% of the patients with epilepsy, indicating the lack of targeted treatment in SLC6A1-NDDs. With increased focus on repurposing drugs and on the development of new treatments, hope is that the outlook reflected here will change over time. ID appeared to be more severe in the adult patients, albeit this might reflect a recruitment bias, where only patients seen in specialized centers were included or it might be a feature of the natural history of SLC6A1-NDDs. This issue warrants to be explored in further studies in larger cohorts.

2.
Brain ; 146(12): 5198-5208, 2023 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-37647852

RESUMEN

Genetic variants in the SLC6A1 gene can cause a broad phenotypic disease spectrum by altering the protein function. Thus, systematically curated clinically relevant genotype-phenotype associations are needed to understand the disease mechanism and improve therapeutic decision-making. We aggregated genetic and clinical data from 172 individuals with likely pathogenic/pathogenic (lp/p) SLC6A1 variants and functional data for 184 variants (14.1% lp/p). Clinical and functional data were available for a subset of 126 individuals. We explored the potential associations of variant positions on the GAT1 3D structure with variant pathogenicity, altered molecular function and phenotype severity using bioinformatic approaches. The GAT1 transmembrane domains 1, 6 and extracellular loop 4 (EL4) were enriched for patient over population variants. Across functionally tested missense variants (n = 156), the spatial proximity from the ligand was associated with loss-of-function in the GAT1 transporter activity. For variants with complete loss of in vitro GABA uptake, we found a 4.6-fold enrichment in patients having severe disease versus non-severe disease (P = 2.9 × 10-3, 95% confidence interval: 1.5-15.3). In summary, we delineated associations between the 3D structure and variant pathogenicity, variant function and phenotype in SLC6A1-related disorders. This knowledge supports biology-informed variant interpretation and research on GAT1 function. All our data can be interactively explored in the SLC6A1 portal (https://slc6a1-portal.broadinstitute.org/).


Asunto(s)
Proteínas Transportadoras de GABA en la Membrana Plasmática , Estudios de Asociación Genética , Mutación Missense , Humanos , Proteínas Transportadoras de GABA en la Membrana Plasmática/genética , Proteínas Transportadoras de GABA en la Membrana Plasmática/metabolismo , Fenotipo
3.
Front Neurosci ; 17: 1024388, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36895422

RESUMEN

Introduction: SLC6A1-related disorder is a genetic neurodevelopmental disorder that is caused by loss of function variants in the SLC6A1 gene. Solute Carrier Family 6 Member 1 (SLC6A1) gene encodes for gamma-aminobutyric acid (GABA) transporter type 1 (GAT1), which is responsible for reuptake of GABA from the synaptic cleft. Tight regulation of GABA levels plays an important role in brain development by balancing inhibitory and excitatory neuronal signaling. Consequently, individuals with SLC6A1-related disorder can have manifestations such as developmental delay, epilepsy, autism spectrum disorder, and a subset have developmental regression. Methods: In this study, we identified patterns of developmental regression among a cohort of 24 patients with SLC6A1-related disorder and assessed for clinical characteristics associated with regression. We reviewed medical records of patients with SLC6A1-related disorder and divided subjects into two groups: 1) regression group and 2) control group. We described the patterns of developmental regression including whether there was a trigger prior to the regression, multiple episodes of regression, and whether or not skills were recovered. We assessed the relationship of clinical characteristics among the regression and control groups including demographic factors, seizures, developmental milestone acquisition, gastrointestinal problems, sleep problems, autism spectrum disorder, and behavioral problems. Results: Individuals with developmental regression had a loss of skills that were previously mastered in developmental domains including speech and language, motor, social, and adaptive skills. The mean age at regression was 2.7 years and most subjects had regression of language or motor skills triggered by seizures, infection, or spontaneously. Although there was no significant difference in clinical characteristics between the two groups, there was a higher prevalence of autism and severe language impairment in the regression group. Discussion: Future studies of a larger cohort of patients are required to make definitive conclusions. Developmental regression is often a sign of severe neurodevelopmental disability in genetic syndromes, but it is poorly understood in SLC6A1-related disorder. Understanding the patterns of developmental regression and the associated clinical characteristics in this rare disorder will be important to medical management, prognostication, and could impact the design of future clinical trials.

4.
Front Neurosci ; 16: 1026065, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36741059

RESUMEN

Introduction: SLC6A1 Neurodevelopmental Disorder (SLC6A1-NDD), first described in 2015, is a rare syndrome caused by a mutation in the SLC6A1 gene which encodes for the GABA Transporter 1 (GAT-1) protein. Epilepsy is one of the most common symptoms in patients and is often the primary treatment target, though the severity of epilepsy is variable. The impact of seizures and other symptoms of SLC6A1-NDD on patients and caregivers is wide-ranging and has not been described in a formal disease concept study. Methods: A literature search was performed using the simple search term, "SLC6A1." Papers published before 2015, and those which did not describe the human neurodevelopmental disorder were removed from analysis. Open-ended interviews on lived experiences were conducted with two patient advocate key opinion leaders. An analysis of de-identified conversations between families of people with SLC6A1-NDD on social media was performed to quantify topics of concern. Results: Published literature described symptoms in all of the following domains: neurological, visual, motor, cognitive, communication, behavior, gastrointestinal, sleep, musculo-skeletal, and emotional in addition to epilepsy. Key opinion leaders noted two unpublished features: altered hand use in infants, and developmental regression with onset of epilepsy. Analysis of social media interactions confirmed that the core symptoms of epilepsy and autistic traits were prominent concerns, but also demonstrated that other symptoms have a large impact on family life. Discussion: For rare diseases, analysis of published literature is important, but may not be as comprehensive as that which can be gleaned from spontaneous interactions between families and through qualitative interviews. This report reflects our current understanding of the lived experience of SLC6A1-NDD. The discrepancy between the domains of disease reported in the literature and those discussed in patient conversations suggests that a formal qualitative interview-based disease concept study of SLC6A1-NDD is warranted.

5.
Brain Commun ; 2(2): fcaa170, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33241211

RESUMEN

Advances in gene discovery have identified genetic variants in the solute carrier family 6 member 1 gene as a monogenic cause of neurodevelopmental disorders, including epilepsy with myoclonic atonic seizures, autism spectrum disorder and intellectual disability. The solute carrier family 6 member 1 gene encodes for the GABA transporter protein type 1, which is responsible for the reuptake of the neurotransmitter GABA, the primary inhibitory neurotransmitter in the central nervous system, from the extracellular space. GABAergic inhibition is essential to counterbalance neuronal excitation, and when significantly disrupted, it negatively impacts brain development leading to developmental differences and seizures. Aggregation of patient variants and observed clinical manifestations expand understanding of the genotypic and phenotypic spectrum of this disorder. Here, we assess genetic and phenotypic features in 116 individuals with solute carrier family 6 member 1 variants, the vast majority of which are likely to lead to GABA transporter protein type 1 loss-of-function. The knowledge acquired will guide therapeutic decisions and the development of targeted therapies that selectively enhance transporter function and may improve symptoms. We analysed the longitudinal and cell type-specific expression of solute carrier family 6 member 1 in humans and localization of patient and control missense variants in a novel GABA transporter protein type 1 protein structure model. In this update, we discuss the progress made in understanding and treating solute carrier family 6 member 1-related disorders thus far, through the concerted efforts of clinicians, scientists and family support groups.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...