Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
Ann N Y Acad Sci ; 1534(1): 118-129, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38442081

RESUMEN

Social bonds influence physiology and behavior, which can shape how individuals respond to physical and affective challenges. Coppery titi monkey (Plecturocebus cupreus) offspring form selective bonds with their fathers, making them ideal for investigating how father-daughter bonds influence juveniles' responses to oxytocin (OT) and arginine-vasopressin (AVP) manipulations. We quantified the expression of father-daughter bond-related behaviors in females (n = 10) and gave acute intranasal treatments of saline, low/medium/high OT, low/high AVP, or an OT receptor antagonist (OTA) to subjects prior to a parent preference test. While females spent more time in proximity to their parents than strangers, we found a large degree of individual variation. Females with greater expression of bonding behaviors responded to OT treatments in a dose-dependent manner. Subjects also spent less time in proximity to strangers when treated with High OT (p = 0.003) and Low OT (p = 0.007), but more time when treated with High AVP (p = 0.007), Low AVP (p = 0.009), and OTA (p = 0.001). Findings from the present study suggest that variation in the expression of bond-related behaviors may alter responsiveness to OT and AVP, increasing engagement with unfamiliar social others. This enhanced sociality with strangers may promote the formation of pair bonds with partners.


Asunto(s)
Callicebus , Oxitocina , Femenino , Animales , Humanos , Oxitocina/metabolismo , Callicebus/metabolismo , Vasopresinas , Conducta Social , Arginina Vasopresina
2.
Comp Med ; 74(1): 3-11, 2024 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-38532262

RESUMEN

L-368,899 is a selective small-molecule oxytocin receptor (OXTR) antagonist originally developed in the 1990s to prevent preterm labor. Although its utility for that purpose was limited, L-368,899 is now one of the most commonly used drugs in animal research for the selective blockade of neural OXTR after peripheral delivery. A growing number of rodent and primate studies have used L-368,899 to evaluate whether certain behaviors are oxytocin dependent. These studies have improved our understanding of oxytocin's function in the brains of rodents and monkeys, but very little work has been done in other mammals, and only a single paper in macaques has provided any evidence that L-368,899 can be detected in the CNS after peripheral delivery. The current study sought to extend those findings in a novel species: coyotes ( Canis latrans ). Coyotes are ubiquitous North American canids that form long-term monogamous pair-bonds. Although monogamy is rare in rodents and primates, all wild canid species studied to date exhibit social monogamy. Coyotes are therefore an excellent model organism for the study of oxytocin and social bonds. Our goal was to determine whether L-368,899 is a viable candidate for future use in behavioral studies in coyotes. We used captive coyotes at the USDA National Wildlife Research Center's Predator Research Facility to evaluate the pharmacokinetics of L-368,899 in blood and CSF during a 90-min time course after intramuscular injection. We then characterized the binding affinity and selectivity of L-368,899 to coyote OXTR and the structurally similar vasopressin 1a receptor. We found that L-368,899 peaked in CSF at 15 to 30 min after intramuscular injection and slowly accumulated in blood. L-368,899 was 40 times more selective for OXTR than vasopressin 1a receptors and bound to the coyote OXTR with an affinity of 12 nM. These features of L-368,899 support its utility in future studies to probe the oxytocin system of coyotes.


Asunto(s)
Canfanos , Coyotes , Piperazinas , Receptores de Oxitocina , Animales , Coyotes/fisiología , Oxitocina , Primates , Vasopresinas
3.
Neuroscience ; 544: 88-101, 2024 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-38431042

RESUMEN

Short-chain fatty acids (SCFAs) are bioactive lipids that are released into the colon as a metabolite of bacterial fermentation of dietary fibers. Beyond their function in the gastrointestinal tract, SCFAs can also have effects inthe brain, as a part of the gut-brain axis. Recent investigations into potential therapeutic interventions via the manipulation of the gut microbiome-and thus their SCFA metabolites-has been emerging as a new branch of personalized medicine,especially for mental health conditions. The current study sought to measure and localize SCFA receptors in the mouse brain. Two cell types have been implicated in the gut-brain axis: microglia and serotonergic neurons. We used fluorescentin situhybridization in brain sections from mice fed diets with different compositions of fat and fiber to quantify the mRNA levels of known gene markers of these two cell types and colocalize each with mRNA for free fatty acid receptors that bind SCFAs. We focused onmicroglia in the hippocampus and the serotonergic neurons of the dorsal raphe. We found high colocalization of SCFA receptors in both microglia and serotonergic neurons and discovered that SCFA receptor expression in the dorsal raphe is driven by fiber solubility, while SCFA receptor expression in the hippocampus is driven by fiber amount. Higher dietary fiber was associated with decreased tyrosine hydroxylase expression. Thus, our results indicate that the amount and solubility of dietary fiber can change gene expression in the brain's microglia and serotonin neurons, potentially via sensitivity to circulating levels of SCFAs produced in the gut.


Asunto(s)
Microglía , Neuronas Serotoninérgicas , Animales , Ratones , Microglía/metabolismo , Neuronas Serotoninérgicas/metabolismo , Ácidos Grasos Volátiles/metabolismo , Fibras de la Dieta/metabolismo , Encéfalo/metabolismo
4.
J Neuroendocrinol ; 35(10): e13339, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37705310

RESUMEN

Strong social bonds are critical to human health; however, the mechanisms by which social bonds are formed and maintained are still being elucidated. The neurohormones oxytocin (OT) and vasopressin (AVP) are considered likely candidates. Primate females, both human and nonhuman, remain understudied populations. Here, we conducted a pharmacological study coupled with a behavioral partner preference test (PPT) to better understand the mechanistic basis of attachment in adult female titi monkeys (Plecturocebus cupreus). This pair-bonding species shares a conserved form of oxytocin with humans and is an excellent model organism to study the neural basis of social bonding. We performed intranasal administration of three doses of oxytocin (IN-OT), two doses of vasopressin (IN-AVP), one dose of an oxytocin antagonist (IN-OTA) and one dose of a saline treatment. We found that compared to the saline control, the IN-AVP treatment (lower dose, 40 IU/kg) decreased the time spent in proximity to the partner and increased lip-smacking toward the stranger. We found no effects of IN-OT or IN-OTA manipulation on partner preference. In contrast, low-dose IN-AVP weakened the partner preference in female titi monkeys.


Asunto(s)
Oxitocina , Pitheciidae , Animales , Femenino , Humanos , Oxitocina/farmacología , Callicebus , Conducta Social , Administración Intranasal , Vasopresinas , Arginina Vasopresina/farmacología
5.
Psychoneuroendocrinology ; 157: 106362, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37586274

RESUMEN

Social interactions regulate our behavior and physiology, and strong social bonds can buffer us from stress. Coppery titi monkeys (Plecturocebus cupreus) are socially monogamous South American monkeys that display strong social bonds. Infants form selective bonds with their fathers, making them ideal for studying father-daughter bonds. We established a method for quantifying variability in expression of bond-related behaviors in females (n = 12), and the present study is the second to use this method for explaining titi monkey responses to behavioral tests. We also investigated how manipulations of oxytocin (OT) and vasopressin (AVP) influenced juvenile behavior and physiology. Subjects received acute intranasal treatments of saline, low/medium/high OT, low/high AVP, or OT receptor antagonist (OTA) prior to an acute social separation. General linear mixed-effects model results revealed fathers were significant behavioral and physiological stress buffers for their daughters, as evidenced by fewer distress vocalizations (p < 0.001), less locomotion (p < 0.001), and lower plasma cortisol (p < 0.001) in a social separation paradigm. Females vocalized less if they exhibited greater expression of bond-related behaviors with their fathers as infants (p = 0.01), and this stress-buffering effect remained even when the daughter was separated from the father (p = 0.001). While treatments did not alter behaviors, OTA treatment caused the largest rise in plasma cortisol (p < 0.001), suggesting blockade of OT receptors can inhibit fathers' stress-buffering effects. Remarkably, females with greater expression of father-daughter bond-related behaviors exhibited an overall reduced physiological separation distress response (p = 0.04). Findings from the present study advance current knowledge of the neurobiological mechanisms foundational to female bonds and help inform how social disruptions may differently impact individuals based on expression of bond-related behaviors.


Asunto(s)
Callicebus , Pitheciidae , Humanos , Animales , Femenino , Masculino , Callicebus/metabolismo , Conducta Social , Núcleo Familiar , Hidrocortisona , Pitheciidae/metabolismo , Oxitocina , Receptores de Oxitocina/metabolismo , Padre
6.
J Neuroendocrinol ; 35(7): e13304, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37267441

RESUMEN

Parenting induces many neurological and behavioral changes that enable parents to rear offspring. Vasopressin plays an important role in this process via its effects on cognition, affect, and neuroplasticity, and in some cases, via interactions with decreased parental androgens. Thus far, the role of these hormones has been primarily studied in rodents. To address this gap, we explored vasopressin receptors and androgens in titi monkeys, a pair-bonding and biparental primate species. In Studies 1 and 2, we used receptor autoradiography to correlate arginine vasopressin receptor 1a (AVPR1a) binding in the hippocampus (Study 1, n = 10) and the rest of the forebrain (Study 2, n = 23) with parental status, parental experience, parity, infant carrying, and pair affiliation. We found that parents exhibited lower AVPR1a binding than non-parents throughout most brain regions assessed, with especially strong effects in the hippocampus (ß = -.61), superior colliculus (ß = -.88), lateral septum (ß = -.35), and medial preoptic area (ß = -.29). The other measures of parental experience also tended to be negatively associated with AVPR1a binding across different brain regions. In Study 3 (n = 44), we compared pre- and postpartum urinary androgen levels in parents and non-parents and found that mothers exhibited a sustained androgen decrease across 3-4 months postpartum (relative to 3 months prepartum; ß ranged from -.72 to -.62 for different comparisons). For males, we found that multiparous fathers exhibited decreased androgen levels at 1-2 weeks postpartum (ß = -.25) and at 3-4 months postpartum (ß = -.40) compared to the prepartum, indicating both immediate and long-term reductions with subsequent paternal experience. Together, the results of this study suggest that decreases in AVPR1a binding and circulating androgens are associated with parental behavior and physiology in titi monkeys.


Asunto(s)
Andrógenos , Receptores de Vasopresinas , Masculino , Humanos , Animales , Embarazo , Femenino , Receptores de Vasopresinas/metabolismo , Andrógenos/metabolismo , Callicebus/metabolismo , Encéfalo/metabolismo , Periodo Posparto
7.
Horm Behav ; 152: 105352, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37018894

RESUMEN

Jealousy is a social emotion that manifests as behavioral reactions from an individual toward a threat to a valuable relationship. Monogamous species exhibit jealousy-type behaviors as an adaptive response to preserve the relationship. Jealousy is also a complex, negatively-valenced emotion which may include fear of loss, anxiety, suspiciousness, and anger. Negative emotion may impair cognitive processes such as cognitive flexibility, an ability important for coping with new situations. However, little is known about how complex social emotions influence cognitive flexibility. To understand the interaction between jealousy and cognitive flexibility, we examined the neural, physiological, and behavioral factors involved in jealousy and cognitive flexibility in female titi monkeys. We presented subjects with a jealousy provoking scenario, followed by a reversal learning task and a PET scan with a glucose-analog radiotracer. We found that female titi monkeys reacted to a jealousy provoking scenario with increased locomotor behavior and higher glucose uptake in the cerebellum; however, hormone measures and were not affected. As only two females demonstrated cognitive flexibility, the effects of jealousy were difficult to interpret. Locomotion behavior was also negatively correlated with glucose uptake in brain areas linked with motivation, sociality, and cognitive flexibility. Surprisingly, glucose uptake in the orbitofrontal cortex (OFC) was significantly decreased during jealousy scenarios, while uptake in the anterior cingulate cortex (ACC) was decreased during reversal tasks. Our findings suggest that the presence of an intruder produces less visible behavioral reactions in female titis than in males, while still reducing activity in the OFC.


Asunto(s)
Callicebus , Celos , Masculino , Animales , Femenino , Emociones , Glucosa , Cognición
8.
Behav Brain Res ; 443: 114334, 2023 04 12.
Artículo en Inglés | MEDLINE | ID: mdl-36781020

RESUMEN

Pair bonding in humans and other socially monogamous species can have positive effects on health and well-being. These attachments also come with the potential for challenges such as separation, jealousy, or grief. Much of the work on the neurobiology of pair bonding in non-human primates has been carried out in coppery titi monkeys (Plecturocebus cupreus), a monogamous South American monkey, although these studies have been primarily in males. In the current study, we utilized female titi monkeys to experimentally examine responses to their monogamous male partner vs. a male stranger or being alone. Positron emission tomography (PET) scans were performed on eight adult female titi monkeys from well-established pairs. We used a within-subjects design in which each female underwent three different conditions after the fluorodeoxyglucose F18 (FDG) injection: a) the subject was reunited with her partner, b) encountered a stranger, or c) was alone in the experimental cage. Behavioural observations were recorded, and plasma assayed for cortisol. Females housed alone showed higher cortisol compared with either the partner or stranger conditions. FDG uptake was higher in the amygdala and hippocampus when interacting with the stranger than the partner. Proximity modulated the relationship between social condition and FDG uptake in several areas. Females entered into mutual proximity more frequently with the partner than with the stranger. Female titi monkeys have different physiological, neural, and behavioural reactions to being with their partner, a stranger male, or being alone.


Asunto(s)
Callicebus , Pitheciidae , Humanos , Animales , Masculino , Femenino , Conducta Social , Pitheciidae/fisiología , Hidrocortisona , Fluorodesoxiglucosa F18 , Apareamiento , Primates , Proteínas de Unión al ADN
9.
Behav Processes ; 206: 104832, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36693577

RESUMEN

Social monogamy is a unique social system exhibited by only 3-5% of mammalian taxa; however, all wild canid species exhibit this social system. Despite the high prevalence of social monogamy among canids, little is known about how they form selective social attachment relationships among non-kin. Thus, we aimed to quantify monogamous behavior in a highly ubiquitous canid, the coyote (Canis latrans). We adapted the three-chambered partner preference test, which was originally developed for prairie voles (Microtus ochrogaster), to assess social preference in mated pairs of captive coyotes at the USDA Predator Research Facility. We quantified monogamy-related behaviors, such as time spent in spatial proximity to a pair-mate versus a stranger. Our behavioral ethogram also included visual seeking, olfactory investigations, ears down, scent marking, and affiliative behavior. Test subjects showed significantly greater affiliative behavior toward their partner than toward a stranger. However, there was extremely high variability both within and between coyote pairs across behavioral measures. These data suggest the need for larger sample sizes when working with species with high individual variability, as well as the need for species- and facility-specific modifications to this testing paradigm and/or ethogram to better adapt it from its laboratory and rodent-based origins.


Asunto(s)
Coyotes , Conducta Social , Animales , Conducta Sexual Animal , Apareamiento , Arvicolinae
10.
Philos Trans R Soc Lond B Biol Sci ; 377(1858): 20210118, 2022 08 29.
Artículo en Inglés | MEDLINE | ID: mdl-35858098

RESUMEN

Oxytocin is an endogenous neuropeptide hormone that influences social behaviour and bonding in mammals. Variations in oxytocin receptor (OXTR) expression may play a role in the social deficits seen in autism spectrum disorder. Previous studies from our laboratory found a dense population of OXTR in the human substantia nigra (SN), a basal ganglia structure in the midbrain that is important in both movement and reward pathways. Here, we explore whether differences in OXTR can be identified in the dopaminergic SN pars compacta of individuals with autism. Postmortem human brain tissue specimens were processed for OXTR autoradiography from four groups: males with autism, females with autism, typically developing (TD) males and TD females. We found that females with autism had significantly lower levels of OXTR than the other groups. To examine potential gene expression differences, we performed in situ hybridization in adjacent slides to visualize and quantify OXTR mRNA as well as mRNA for tyrosine hydroxylase. We found no differences in mRNA levels for either gene across the four groups. These results suggest that a dysregulation in local OXTR protein translation or increased OXTR internalization/recycling may contribute to the differences in social symptoms seen in females with autism. This article is part of the theme issue 'Interplays between oxytocin and other neuromodulators in shaping complex social behaviours'.


Asunto(s)
Trastorno del Espectro Autista , Receptores de Oxitocina , Animales , Trastorno del Espectro Autista/genética , Femenino , Humanos , Masculino , Mamíferos/genética , Oxitocina/metabolismo , Porción Compacta de la Sustancia Negra/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Receptores de Oxitocina/genética , Receptores de Oxitocina/metabolismo , Sustancia Negra/metabolismo
11.
Transl Psychiatry ; 12(1): 217, 2022 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-35641487

RESUMEN

Neuroscience research presents contradictory evidence in support of both the protective and destructive effects of cannabinoids in depression. Therefore, this systematic review and meta-analysis summarizes the existing preclinical literature on the effects of cannabinoid administration in the chronic unpredictable stress model of depression in order to evaluate the effects of cannabinoids and identify gaps in the literature. After protocol registration (PROSPERO #CRD42020219986), we systematically searched Scopus, Embase, Psychology & Behavioral Sciences Collection, APA PsychINFO, PubMed, CINAHL Complete, and ProQuest Dissertations & Theses Global from the earliest record of the databases, February 1964, to November 2020 for articles that met inclusion criteria (e.g., rodent subjects and administration of a cannabinoid. A total of 26 articles were included representing a sample size estimate of 1132 rodents with the majority of articles administering daily intraperitoneal injections during chronic unpredictable stress. These articles were evaluated using a modified SYRCLE's risk-of-bias tool. For each continuous behavioral measure, the standardized mean difference was calculated between cannabinoid and vehicle groups in rodents subjected to chronic unpredictable stress. The effects of cannabinoids on depressive-like behavior was evaluated using a multilevel mixed-effects model with effect size weights nested within control groups. Cannabinoid administration moderately improved the pooled negative effects of chronic unpredictable stress on anhedonia, learned helplessness, novelty suppressed feeding, time in the anxiogenic context, and entries into the anxiogenic context. Although the interpretations are limited, these findings suggest that with further investigation, cannabinoids may be a viable long-term treatment for stress-related psychopathologies such as depression.


Asunto(s)
Ansiolíticos , Cannabinoides , Ansiolíticos/farmacología , Ansiolíticos/uso terapéutico , Antidepresivos/farmacología , Antidepresivos/uso terapéutico , Cannabinoides/farmacología , Cannabinoides/uso terapéutico , Humanos
12.
Horm Behav ; 140: 105126, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35123106

RESUMEN

Intranasal oxytocin (IN OXT) administration has been proposed as a pharmacological treatment for a range of biomedical conditions including neurodevelopmental disorders. However, studies evaluating the potential long-lasting effects of chronic IN OXT during development are still scarce. Here we conducted a follow-up study of a cohort of adult titi monkeys that received intranasal oxytocin 0.8 IU/kg (n = 15) or saline (n = 14) daily for six months during their juvenile period (12 to 18 months of age), with the goal of evaluating the potential long-lasting behavioral and neural effects one year post-treatment. Subjects were paired with an opposite-sex mate at 30 months of age (one year post-treatment). We examined pair affiliative behavior in the home cage during the first four months and tested for behavioral components of pair bonding at one week and four months post-pairing. We assessed long-term changes in brain glucose uptake using 18FDG positron emission tomography (PET) scans. Our results showed that OXT-treated animals were more affiliative across a number of measures, including tail twining, compared to SAL treated subjects (tail twining is considered the "highest" type of affiliation in titi monkeys). Neuroimaging showed no treatment differences in glucose uptake between SAL and OXT-treated animals; however, females showed higher glucose uptake in whole brain at 23 months, and in both the whole brain and the social salience network at 33 months of age compared to males. Our results suggest that chronic IN OXT administration during development can have long-term effects on adult social behavior.


Asunto(s)
Callicebus , Oxitocina , Administración Intranasal , Animales , Encéfalo/diagnóstico por imagen , Proteínas de Unión al ADN , Femenino , Estudios de Seguimiento , Glucosa , Masculino , Oxitocina/farmacología , Conducta Social
13.
Methods Mol Biol ; 2384: 105-125, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34550571

RESUMEN

Despite its development almost 40 years ago, receptor autoradiography remains a regular and reliable practice for the localization of oxytocin and vasopressin receptors in brain tissue sections. It is used across many laboratories, institutions, and animal species to characterize and quantify the distribution and density of these receptors at baseline and/or in response to experimental manipulations or lived experience. This powerful tool and the neuroanatomical receptor maps that it generates have allowed researchers to more accurately investigate and understand the neural substrates upon which oxytocin and vasopressin act to affect behavior. Researchers have used these maps to design site-specific pharmacological manipulations and electrophysiological recordings in animal studies to directly probe the underlying neural mechanisms in this system. This methods chapter describes the specific procedures by which a pharmacologically optimized, competitive binding modification to receptor autoradiography can be used to reliably localize oxytocin and vasopressin receptors in the human brain and in the brains of nonhuman primates. The ability to reliably perform receptor autoradiography for these targets in human brain tissue can finally inform our interpretation of past intranasal oxytocin neuroimaging studies and allows us to move past the reliance on transcriptomic studies using brain tissue homogenates so that we can directly investigate the involvement of oxytocin and vasopressin receptors in human behavior, physiology, and neuropsychiatric disease.


Asunto(s)
Encéfalo , Animales , Autorradiografía , Encéfalo/metabolismo , Humanos , Oxitocina , Primates/metabolismo , Receptores de Oxitocina/genética , Receptores de Vasopresinas/genética , Receptores de Vasopresinas/metabolismo , Vasopresinas
14.
J Neuroendocrinol ; 33(8): e13001, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34189787

RESUMEN

Paternal absence can significantly alter bio-behavioural development in many biparental species. This effect has generally been demonstrated by comparing the development of offspring reared under biparental care with those reared by a single mother. However, studies employing this design conflate two significant modifications to early-life experience: removal of father-specific qualities and the general reduction of offspring-directed care. In the socially monogamous prairie vole (Microtus ochrogaster), the experience of paternal absence without substitution during development inhibits partner preference formation in adulthood, a hallmark of social monogamy, in females and males. Employing alloparents as substitutes for fathers, our previous work demonstrated that paternal absence affects pair-bond formation in female offspring via reduced quantity of care, although it affects pair-bond formation in male offspring by means of a missing paternal quality (or qualities). Here, we present evidence that paternal absence (with and without alloparental substitution) may alter the ontogeny of neural oxytocin receptor (OXTR) and/or vasopressin 1a receptor (AVPR1a) distribution in male and female prairie voles. Compared to biparentally reared controls (BPC), male offspring reared in mother only (MON) and maternal-plus-alloparental (MPA) conditions show lower densities of OXTR in the central amygdala; and MPA males show lower densities of OXTR in the caudate putamen and nucleus accumbens. Early-life experience was not associated with differences in AVPR1a density in males. However, MON and MPA females show greater densities of AVPR1a in the medial amygdala than BPC; and MPA females show greater densities of AVPR1a in the ventromedial nucleus of the hypothalamus. We also demonstrate with corticosterone concentrations that MON and MPA offspring are not differentially susceptible to a stressor (ie, social isolation) than BPC offspring. These findings suggest that paternal absence, although likely not a salient early-life stressor, has neuroendocrine consequences for offspring, some of which may affect partner preference formation.


Asunto(s)
Arvicolinae/fisiología , Comportamiento de Nidificación/fisiología , Oxitocina/metabolismo , Receptores de Vasopresinas/metabolismo , Animales , Animales Recién Nacidos , Femenino , Hipotálamo/metabolismo , Masculino , Núcleo Accumbens/metabolismo , Apareamiento , Conducta Paterna/fisiología , Embarazo , Receptores de Oxitocina/metabolismo
15.
Sci Rep ; 11(1): 3746, 2021 02 12.
Artículo en Inglés | MEDLINE | ID: mdl-33580133

RESUMEN

Contemporary theory that emphasizes the roles of oxytocin and vasopressin in mammalian sociality has been shaped by seminal vole research that revealed interspecific variation in neuroendocrine circuitry by mating system. However, substantial challenges exist in interpreting and translating these rodent findings to other mammalian groups, including humans, making research on nonhuman primates crucial. Both monogamous and non-monogamous species exist within Eulemur, a genus of strepsirrhine primate, offering a rare opportunity to broaden a comparative perspective on oxytocin and vasopressin neurocircuitry with increased evolutionary relevance to humans. We performed oxytocin and arginine vasopressin 1a receptor autoradiography on 12 Eulemur brains from seven closely related species to (1) characterize receptor distributions across the genus, and (2) examine differences between monogamous and non-monogamous species in regions part of putative "pair-bonding circuits". We find some binding patterns across Eulemur reminiscent of olfactory-guided rodents, but others congruent with more visually oriented anthropoids, consistent with lemurs occupying an 'intermediary' evolutionary niche between haplorhine primates and other mammalian groups. We find little evidence of a "pair-bonding circuit" in Eulemur akin to those proposed in previous rodent or primate research. Mapping neuropeptide receptors in these nontraditional species questions existing assumptions and informs proposed evolutionary explanations about the biological bases of monogamy.


Asunto(s)
Receptores de Oxitocina/metabolismo , Receptores de Vasopresinas/metabolismo , Conducta Sexual Animal/fisiología , Animales , Evolución Biológica , Encéfalo/metabolismo , Mapeo Encefálico/métodos , Evolución Molecular , Femenino , Lemuridae/metabolismo , Masculino , Memoria , Sistemas Neurosecretores/metabolismo , Oxitocina/metabolismo , Apareamiento , Primates , Reproducción , Conducta Social , Especificidad de la Especie , Vasopresinas/metabolismo
16.
J Comp Neurol ; 529(5): 1004-1017, 2021 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-33460115

RESUMEN

Across many species, endocannabinoids play an important role in regulating social play, reward, and anxiety. These processes are mediated through at least two distinct cannabinoid receptors (CB), CB1 and CB2. CB1 expression is found in appreciable densities across regions of the brain that integrate memory with socio-spatial information; many of these regions have been directly linked to the neurobiology of pair bonding in monogamous species. Using receptor autoradiography, we provide the first distributional map of CB1 within the brains of closely related monogamous prairie voles and promiscuous meadow voles, and compare receptor densities across sexes and species in limbic regions. We observe CB1-specific signal using [3H] CP-55,940 and [3H] SR141716A, though the latter exhibited a lower signal to noise ratio. We confirmed the presence of CB2 in prairie vole spleen tissue using [3H] CP-55,940. However, we found no evidence of CB2 in the brain using either [3H] CP-55,940 or [3H] A-836,339. The overall distribution of putative CB1 in the brain was similar across vole species and followed the pattern of CB1 expression observed in other species-high intensity binding within the telencephalon, moderate binding within the diencephalon, and mild binding within the mesencephalon and metencephalon (aside from the cerebellar cortex). However, we found profound differences in CB1 densities across species, with prairie voles having higher CB1 binding in regions implicated in social attachment and spatial memory (e.g., periaqueductal gray, hippocampus). These findings suggest that CB1 densities, but not distribution, correlate with the social systems of vole species.


Asunto(s)
Arvicolinae/fisiología , Receptor Cannabinoide CB1/análisis , Conducta Sexual Animal/fisiología , Animales , Química Encefálica , Antagonistas de Receptores de Cannabinoides/farmacología , Femenino , Ligandos , Masculino , Red Nerviosa/fisiología , Especificidad de Órganos , Apareamiento , Ensayo de Unión Radioligante , Receptor Cannabinoide CB2/análisis , Rimonabant/farmacología , Caracteres Sexuales , Especificidad de la Especie , Bazo/química , Tiazoles/farmacología
17.
Front Behav Neurosci ; 14: 584731, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33304247

RESUMEN

Developmental exposure to selective serotonin reuptake inhibitor (SSRI) increases the risk of Autism Spectrum Disorder (ASD), however, the underlying neurobiology of this effect is not fully understood. Here we used the socially monogamous prairie vole as a translational model of developmental SSRI exposure. Paired female prairie voles (n = 20) were treated with 5 mg/kg subcutaneous fluoxetine (FLX) or saline (SAL) daily from birth of the second litter until the day of birth of the 4th litter. This design created three cohorts of FLX exposure: postnatal exposure in litter 2, both prenatal and postnatal exposure in litter 3, and prenatal exposure in litter 4. Post-weaning, subjects underwent behavioral testing to detect changes in sociality, repetitive behavior, pair-bond formation, and anxiety-like behavior. Quantitative receptor autoradiography was performed for oxytocin, vasopressin 1a, and serotonin 1a receptor density in a subset of brains. We observed increased anxiety-like behavior and reduced sociality in developmentally FLX exposed adults. FLX exposure decreased oxytocin receptor binding in the nucleus accumbens core and central amygdala, and vasopressin 1a receptor binding in the medial amygdala. FLX exposure did not affect serotonin 1A receptor binding in any areas examined. Changes to oxytocin and vasopressin receptors may underlie the behavioral changes observed and have translational implications for the mechanism of the increased risk of ASD subsequent to prenatal SSRI exposure.

18.
Psychoneuroendocrinology ; 113: 104494, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31862614

RESUMEN

Intranasal oxytocin (IN OXT) has been proposed as a treatment for autism spectrum disorder (ASD); however, little is known about the effects of long-term exposure. This is the first study in a non-human primate species to examine how developmental exposure to chronic IN OXT affects juvenile's interactions with family members, social preference for parents versus strangers, anxiety-like behavior, and cerebral glucose metabolism. Titi monkeys are socially monogamous and biparental; their family bonds share important characteristics with human family bonds. Fourteen males and 15 females were treated intranasally with saline (n = 14) or 0.8 IU/kg OXT (n = 15), daily from 12 to 18 months of age. Compared to SAL-treated animals, OXT-treated animals of both sexes spent significantly more time grooming other family members (F1 = 8.97, p = 0.006). Overall, OXT-treated subjects were more social (F1 = 8.35, p = 0.005) during preference tests. OXT-treated females displayed an enhanced preference for their parents (t = 2.265, p = 0.026). OXT-treated males had a blunted preference for their parents and an increase in the time spent near unfamiliar pairs (F1 = 10.89, p = 0.001). During anxiety tests, OXT-treated males refused to complete the task more often than SAL-treated males and had longer latencies (p < 0.0001). Neuroimaging studies revealed that OXT-treated animals had higher glucose uptake across the social salience network as a whole after one month of treatment (F1,9 = 1.07, p = 0.042). Our results suggest moderate prosocial effects of chronic IN OXT, that did not depend on anxiolytic properties. We also found important sex differences that should be considered in a translational context.


Asunto(s)
Trastorno del Espectro Autista/tratamiento farmacológico , Glucosa/metabolismo , Oxitocina/farmacología , Administración Intranasal/métodos , Animales , Ansiedad/fisiopatología , Conducta Animal/efectos de los fármacos , Callicebus/fisiología , Femenino , Masculino , Modelos Animales , Oxitocina/administración & dosificación , Factores Sexuales , Conducta Social
19.
Front Behav Neurosci ; 13: 39, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30890923

RESUMEN

Eye-tracking methods measure what humans and other animals visually attend to in the environment. In nonhuman primates, eye tracking can be used to test hypotheses about how primates process social information. This information can further our understanding of primate behavior as well as offer unique translational potential to explore causes of or treatments for altered social processing as seen in people with neurodevelopmental disorders such as autism spectrum disorder and schizophrenia. However, previous methods for collecting eye-tracking data in nonhuman primates required some form of head restraint, which limits the opportunities for research with respect to the number of or kinds of primates that can undergo an eye-tracking study. We developed a novel, noninvasive method for collecting eye tracking data that can be used both in animals that are difficult to restrain without sedation as well as animals that are of different ages and sizes as the box size can be adjusted. Using a transport box modified with a viewing window, we collected eye-tracking data in both New (Callicebus cupreus) and Old World monkeys (Macaca mulatta) across multiple developmental time points. These monkeys had the option to move around the box and avert their eyes from the screen, yet, they demonstrated a natural interest in viewing species-specific imagery with no previous habituation to the eye-tracking paradigm. Provided with opportunistic data from voluntary viewing of stimuli, we found that juveniles viewed stimuli more than other age groups, videos were viewed more than static photo imagery, and that monkeys increased their viewing time when presented with multiple eye tracking sessions. This noninvasive approach opens new opportunities to integrate eye-tracking studies into nonhuman primate research.

20.
Transl Psychiatry ; 8(1): 257, 2018 12 04.
Artículo en Inglés | MEDLINE | ID: mdl-30514927

RESUMEN

The prosocial hormone oxytocin (OXT) has become a new target for research on the etiology and treatment of autism spectrum disorder (ASD), a condition characterized by deficits in social function. However, it remains unknown whether there are alterations in OXT receptor (OXTR) levels in the ASD brain. This study quantified the density of OXTR and of the structurally related vasopressin 1a receptor (AVPR1a) in postmortem brain tissue from individuals with ASD and typically developing individuals. We analyzed two regions known to contain OXTR across all primates studied to date: the nucleus basalis of Meynert (NBM), which mediates visual attention, and the superior colliculus, which controls gaze direction. In the NBM specimens, we also analyzed the neighboring ventral pallidum (VP) and the external segment of the globus pallidus. In the superior colliculus specimens, we also analyzed the adjacent periaqueductal gray. We detected dense OXTR binding in the human NBM and VP and moderate to low OXTR binding in the human globus pallidus, superior colliculus, and periaqueductal gray. AVPR1a binding was negligible across all five regions in all specimens. Compared to controls, ASD specimens exhibited significantly higher OXTR binding in the NBM and significantly lower OXTR binding in the VP, an area in the mesolimbic reward pathway. There was no effect of ASD on OXTR binding in the globus pallidus, superior colliculus, or periaqueductal gray. We also found a significant negative correlation between age and OXTR binding in the VP across all specimens. Further analysis revealed a peak in OXTR binding in the VP in early childhood of typically developing individuals, which was absent in ASD. This pattern suggests a possible early life critical period, which is lacking in ASD, where this important reward area becomes maximally sensitive to OXT binding. These results provide unique neurobiological insight into human social development and the social symptoms of ASD.


Asunto(s)
Trastorno del Espectro Autista/metabolismo , Prosencéfalo Basal/metabolismo , Mesencéfalo/metabolismo , Receptores de Oxitocina/metabolismo , Receptores de Vasopresinas/metabolismo , Bancos de Tejidos , Adolescente , Adulto , Factores de Edad , Autorradiografía , Niño , Preescolar , Humanos , Masculino , Método Simple Ciego , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...