Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Pathologie (Heidelb) ; 44(Suppl 3): 225-228, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37987815

RESUMEN

The Swiss Digital Pathology Consortium (SDiPath) was founded in 2018 as a working group of the Swiss Society for Pathology with the aim of networking, training, and promoting digital pathology (DP) at a national level. Since then, two national surveys have been carried out on the level of knowledge, dissemination, use, and needs in DP, which have resulted in clear fields of action. In addition to organizing symposia and workshops, national guidelines were drawn up and an initiative for a national DP platform actively codesigned. With the growing use of digital image processing and artificial intelligence tools, continuous monitoring, evaluation, and exchange of experiences will be pursued, along with best practices.


Asunto(s)
Inteligencia Artificial , Procesamiento de Imagen Asistido por Computador , Suiza
2.
Mod Pathol ; 36(12): 100335, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37742926

RESUMEN

Tumor cell fraction (TCF) estimation is a common clinical task with well-established large interobserver variability. It thus provides an ideal test bed to evaluate potential impacts of employing a tumor cell fraction computer-aided diagnostic (TCFCAD) tool to support pathologists' evaluation. During a National Slide Seminar event, pathologists (n = 69) were asked to visually estimate TCF in 10 regions of interest (ROIs) from hematoxylin and eosin colorectal cancer images intentionally curated for diverse tissue compositions, cellularity, and stain intensities. Next, they re-evaluated the same ROIs while being provided a TCFCAD-created overlay highlighting predicted tumor vs nontumor cells, together with the corresponding TCF percentage. Participants also reported confidence levels in their assessments using a 5-tier scale, indicating no confidence to high confidence, respectively. The TCF ground truth (GT) was defined by manual cell-counting by experts. When assisted, interobserver variability significantly decreased, showing estimates converging to the GT. This improvement remained even when TCFCAD predictions deviated slightly from the GT. The standard deviation (SD) of the estimated TCF to the GT across ROIs was 9.9% vs 5.8% with TCFCAD (P < .0001). The intraclass correlation coefficient increased from 0.8 to 0.93 (95% CI, 0.65-0.93 vs 0.86-0.98), and pathologists stated feeling more confident when aided (3.67 ± 0.81 vs 4.17 ± 0.82 with the computer-aided diagnostic [CAD] tool). TCFCAD estimation support demonstrated improved scoring accuracy, interpathologist agreement, and scoring confidence. Interestingly, pathologists also expressed more willingness to use such a CAD tool at the end of the survey, highlighting the importance of training/education to increase adoption of CAD systems.


Asunto(s)
Computadores , Patólogos , Humanos , Suiza
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...