Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
2.
PLoS One ; 15(10): e0240886, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33064769

RESUMEN

Arbuscular mycorrhizal symbiosis is a mutualistic interaction between most land plants and fungi of the glomeromycotina subphylum. The initiation, development and regulation of this symbiosis involve numerous signalling events between and within the symbiotic partners. Among other signals, phytohormones are known to play important roles at various stages of the interaction. During presymbiotic steps, plant roots exude strigolactones which stimulate fungal spore germination and hyphal branching, and promote the initiation of symbiosis. At later stages, different plant hormone classes can act as positive or negative regulators of the interaction. Although the fungus is known to reciprocally emit regulatory signals, its potential contribution to the phytohormonal pool has received little attention, and has so far only been addressed by indirect assays. In this study, using mass spectrometry, we analyzed phytohormones released into the medium by germinated spores of the arbuscular mycorrhizal fungus Rhizophagus irregularis. We detected the presence of a cytokinin (isopentenyl adenosine) and an auxin (indole-acetic acid). In addition, we identified a gibberellin (gibberellin A4) in spore extracts. We also used gas chromatography to show that R. irregularis produces ethylene from methionine and the α-keto γ-methylthio butyric acid pathway. These results highlight the possibility for AM fungi to use phytohormones to interact with their host plants, or to regulate their own development.


Asunto(s)
Hongos/metabolismo , Reguladores del Crecimiento de las Plantas/análisis , Cromatografía de Gases , Cromatografía Líquida de Alta Presión , Citocininas/análisis , Citocininas/metabolismo , Etilenos/análisis , Etilenos/metabolismo , Giberelinas/análisis , Giberelinas/metabolismo , Ácidos Indolacéticos/análisis , Ácidos Indolacéticos/metabolismo , Espectrometría de Masas , Micorrizas/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Esporas Fúngicas/metabolismo , Simbiosis
3.
BMC Genomics ; 20(1): 64, 2019 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-30658568

RESUMEN

BACKGROUND: Many small peptides regulate eukaryotic cell biology. In fungi, some of these peptides are produced after KEX2 protease activity on proteins displaying repetitions of identical or nearly identical motifs. Following this endoprotease activity, peptides are released in the extracellular space. This type of protein maturation is involved in the production of the α-type sexual pheromone in Ascomycota. In other cases, this processing allows the production of secreted peptides regulating fungal cell wall structure or acting as mycotoxins. In this work, we report for the first time a genome-wide search of KEX2-processed repeat proteins that we call KEPs. We screened the secreted proteins of 250 fungal species to compare their KEP repertoires with regard to their lifestyle, morphology or lineage. RESULTS: Our analysis points out that nearly all fungi display putative KEPs, suggesting an ancestral origin common to all opisthokonts. As expected, our pipeline identifies mycotoxins but also α-type sexual pheromones in Ascomycota that have not been explored so far, and unravels KEP-derived secreted peptides of unknown functions. Some species display an expansion of this class of proteins. Interestingly, we identified conserved KEPs in pathogenic fungi, suggesting a role in virulence. We also identified KEPs in Basidiomycota with striking similarities to Ascomycota α-type sexual pheromones, suggesting they may also play alternative roles in unknown signalling processes. CONCLUSIONS: We identified putative, new, unexpected secreted peptides that fall into different functional categories: mycotoxins, hormones, sexual pheromones, or effectors that promote colonization during host-microbe interactions. This wide survey will open new avenues in the field of small-secreted peptides in fungi that are critical regulators of their intimate biology and modulators of their interaction with the environment.


Asunto(s)
Proteínas Fúngicas/genética , Hongos/genética , Genoma Fúngico/genética , Señales de Clasificación de Proteína/genética , Secuencia de Aminoácidos , Ascomicetos/clasificación , Ascomicetos/genética , Ascomicetos/metabolismo , Basidiomycota/clasificación , Basidiomycota/genética , Basidiomycota/metabolismo , Proteínas Fúngicas/metabolismo , Hongos/clasificación , Hongos/metabolismo , Factor de Apareamiento/genética , Factor de Apareamiento/metabolismo , Filogenia
4.
New Phytol ; 222(2): 1030-1042, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30554405

RESUMEN

The arbuscular mycorrhizal (AM) symbiosis is a beneficial association established between land plants and the members of a subphylum of fungi, the Glomeromycotina. How the two symbiotic partners regulate their association is still enigmatic. Secreted fungal peptides are candidates for regulating this interaction. We searched for fungal peptides with similarities with known plant signalling peptides. We identified CLAVATA (CLV)/EMBRYO SURROUNDING REGION (ESR)-RELATED PROTEIN (CLE) genes in phylogenetically distant AM fungi: four Rhizophagus species and one Gigaspora species. These CLE genes encode a signal peptide for secretion and the conserved CLE C-terminal motif. They seem to be absent in the other fungal clades. Rhizophagus irregularis and Gigaspora rosea CLE genes (RiCLE1 and GrCLE1) are transcriptionally induced in symbiotic vs asymbiotic conditions. Exogenous application of synthetic RiCLE1 peptide on Medicago truncatula affects root architecture, by slowing the apical growth of primary roots and stimulating the formation of lateral roots. In addition, pretreatment of seedlings with RiCLE1 peptide stimulates mycorrhization. Our findings demonstrate for the first time that in addition to plants and nematodes, AM fungi also possess CLE genes. These results pave the way for deciphering new mechanisms by which AM fungi modulate plant cellular responses during the establishment of AM symbiosis.


Asunto(s)
Proteínas Fúngicas/genética , Genes Fúngicos , Micorrizas/genética , Simbiosis , Secuencia de Aminoácidos , Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Regulación Fúngica de la Expresión Génica/efectos de los fármacos , Medicago truncatula/efectos de los fármacos , Medicago truncatula/microbiología , Micorrizas/efectos de los fármacos , Micorrizas/crecimiento & desarrollo , Péptidos/farmacología , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/microbiología , ARN Mensajero/genética , ARN Mensajero/metabolismo , Simbiosis/efectos de los fármacos , Simbiosis/genética , Transcripción Genética/efectos de los fármacos
6.
Nucleic Acids Res ; 45(9): 5061-5073, 2017 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-28402429

RESUMEN

Alternative splicing generates multiple transcript and protein isoforms from the same gene and thus is important in gene expression regulation. To date, RNA-sequencing (RNA-seq) is the standard method for quantifying changes in alternative splicing on a genome-wide scale. Understanding the current limitations of RNA-seq is crucial for reliable analysis and the lack of high quality, comprehensive transcriptomes for most species, including model organisms such as Arabidopsis, is a major constraint in accurate quantification of transcript isoforms. To address this, we designed a novel pipeline with stringent filters and assembled a comprehensive Reference Transcript Dataset for Arabidopsis (AtRTD2) containing 82,190 non-redundant transcripts from 34 212 genes. Extensive experimental validation showed that AtRTD2 and its modified version, AtRTD2-QUASI, for use in Quantification of Alternatively Spliced Isoforms, outperform other available transcriptomes in RNA-seq analysis. This strategy can be implemented in other species to build a pipeline for transcript-level expression and alternative splicing analyses.


Asunto(s)
Empalme Alternativo , Arabidopsis/genética , Genes de Insecto , Transcriptoma , Variación Genética , Proteómica , ARN no Traducido , Valores de Referencia , Reproducibilidad de los Resultados , Análisis de Secuencia de ARN , Transcripción Genética
7.
Front Plant Sci ; 8: 124, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28223991

RESUMEN

Arbuscular mycorrhizal fungi (AMF), belonging to the fungal phylum Glomeromycota, form mutualistic symbioses with roots of almost 80% of land plants. The release of genomic data from the ubiquitous AMF Rhizophagus irregularis revealed that this species possesses a large set of putative secreted proteins (RiSPs) that could be of major importance for establishing the symbiosis. In the present study, we aimed to identify SPs involved in the establishment of AM symbiosis based on comparative gene expression analyses. We first curated the secretome of the R. irregularis DAOM 197198 strain based on two available genomic assemblies. Then we analyzed the expression patterns of the putative RiSPs obtained from the fungus in symbiotic association with three phylogenetically distant host plants-a monocot, a dicot and a liverwort-in comparison with non-symbiotic stages. We found that 33 out of 84 RiSPs induced in planta were commonly up-regulated in these three hosts. Most of these common RiSPs are small proteins of unknown function that may represent putative host non-specific effector proteins. We further investigated the expressed secretome of Gigaspora rosea, an AM fungal species phylogenetically distant from R. irregularis. G. rosea also presents original symbiotic features, a narrower host spectrum and a restrictive geographic distribution compared to R. irregularis. Interestingly, when analyzing up-regulated G. rosea SPs (GrSPs) in different hosts, a higher ratio of host-specific GrSPs was found compared to RiSPs. Such difference of expression patterns may mirror the restrained host spectrum of G. rosea compared to R. irregularis. Finally, we identified a set of conserved SPs, commonly up-regulated by both fungi in all hosts tested, that could correspond to common keys of AMF to colonize host plants. Our data thus highlight the specificities of two distant AM fungi and help in understanding their conserved and specific strategies to invade different hosts.

8.
Plant J ; 82(2): 232-44, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25720833

RESUMEN

Abscisic acid (ABA) is a major phytohormone involved in important stress-related and developmental plant processes. Recent phosphoproteomic analyses revealed a large set of ABA-triggered phosphoproteins as putative mitogen-activated protein kinase (MAPK) targets, although the evidence for MAPKs involved in ABA signalling is still scarce. Here, we identified and reconstituted in vivo a complete ABA-activated MAPK cascade, composed of the MAP3Ks MAP3K17/18, the MAP2K MKK3 and the four C group MAPKs MPK1/2/7/14. In planta, we show that ABA activation of MPK7 is blocked in mkk3-1 and map3k17mapk3k18 plants. Coherently, both mutants exhibit hypersensitivity to ABA and altered expression of a set of ABA-dependent genes. A genetic analysis further reveals that this MAPK cascade is activated by the PYR/PYL/RCAR-SnRK2-PP2C ABA core signalling module through protein synthesis of the MAP3Ks, unveiling an atypical mechanism for MAPK activation in eukaryotes. Our work provides evidence for a role of an ABA-induced MAPK pathway in plant stress signalling.


Asunto(s)
Ácido Abscísico/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimología , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Sistema de Señalización de MAP Quinasas/fisiología
9.
Genome Biol ; 15(6): R87, 2014 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-24980080

RESUMEN

BACKGROUND: Mitogen-activated protein kinases (MAPKs) are key regulators of immune responses in animals and plants. In Arabidopsis, perception of microbe-associated molecular patterns (MAMPs) activates the MAPKs MPK3, MPK4 and MPK6. Increasing information depicts the molecular events activated by MAMPs in plants, but the specific and cooperative contributions of the MAPKs in these signalling events are largely unclear. RESULTS: In this work, we analyse the behaviour of MPK3, MPK4 and MPK6 mutants in early and late immune responses triggered by the MAMP flg22 from bacterial flagellin. A genome-wide transcriptome analysis reveals that 36% of the flg22-upregulated genes and 68% of the flg22-downregulated genes are affected in at least one MAPK mutant. So far MPK4 was considered as a negative regulator of immunity, whereas MPK3 and MPK6 were believed to play partially redundant positive functions in defence. Our work reveals that MPK4 is required for the regulation of approximately 50% of flg22-induced genes and we identify a negative role for MPK3 in regulating defence gene expression, flg22-induced salicylic acid accumulation and disease resistance to Pseudomonas syringae. Among the MAPK-dependent genes, 27% of flg22-upregulated genes and 76% of flg22-downregulated genes require two or three MAPKs for their regulation. The flg22-induced MAPK activities are differentially regulated in MPK3 and MPK6 mutants, both in amplitude and duration, revealing a highly interdependent network. CONCLUSIONS: These data reveal a new set of distinct functions for MPK3, MPK4 and MPK6 and indicate that the plant immune signalling network is choreographed through the interplay of these three interwoven MAPK pathways.


Asunto(s)
Proteínas de Arabidopsis/fisiología , Arabidopsis/enzimología , Quinasas de Proteína Quinasa Activadas por Mitógenos/fisiología , Arabidopsis/inmunología , Resistencia a la Enfermedad , Flagelina/inmunología , Regulación de la Expresión Génica de las Plantas/inmunología , Redes Reguladoras de Genes , Proteínas Quinasas Activadas por Mitógenos/fisiología , Análisis de Secuencia por Matrices de Oligonucleótidos , Inmunidad de la Planta , Pseudomonas syringae/inmunología , Activación Transcripcional , Transcriptoma
10.
Mol Plant ; 7(4): 675-90, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24249726

RESUMEN

Strigolactones (SLs) are known not only as plant hormones, but also as rhizosphere signals for establishing symbiotic and parasitic interactions. The design of new specific SL analogs is a challenging goal in understanding the basic plant biology and is also useful to control plant architectures without favoring the development of parasitic plants. Two different molecules (23 (3'-methyl-GR24), 31 (thia-3'-methyl-debranone-like molecule)) already described, and a new one (AR36), for which the synthesis is presented, are biologically compared with the well-known GR24 and the recently identified CISA-1. These different structures emphasize the wide range of parts attached to the D-ring for the bioactivity as a plant hormone. These new compounds possess a common dimethylbutenolide motif but their structure varies in the ABC part of the molecules: 23 has the same ABC part as GR24, while 31 and AR36 carry, respectively, an aromatic ring and an acyclic carbon chain. Detailed information is given for the bioactivity of such derivatives in strigolactone synthesis or in perception mutant plants (pea rms1 and rms4, Arabidopsis max2 and, max4) for different hormonal functions along with their action in the rhizosphere on arbuscular mycorrhizal hyphal growth and parasitic weed germination.


Asunto(s)
Lactonas/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Rizosfera , Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas , Glomeromycota/metabolismo
11.
Proc Natl Acad Sci U S A ; 110(50): 20117-22, 2013 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-24277808

RESUMEN

The mutualistic symbiosis involving Glomeromycota, a distinctive phylum of early diverging Fungi, is widely hypothesized to have promoted the evolution of land plants during the middle Paleozoic. These arbuscular mycorrhizal fungi (AMF) perform vital functions in the phosphorus cycle that are fundamental to sustainable crop plant productivity. The unusual biological features of AMF have long fascinated evolutionary biologists. The coenocytic hyphae host a community of hundreds of nuclei and reproduce clonally through large multinucleated spores. It has been suggested that the AMF maintain a stable assemblage of several different genomes during the life cycle, but this genomic organization has been questioned. Here we introduce the 153-Mb haploid genome of Rhizophagus irregularis and its repertoire of 28,232 genes. The observed low level of genome polymorphism (0.43 SNP per kb) is not consistent with the occurrence of multiple, highly diverged genomes. The expansion of mating-related genes suggests the existence of cryptic sex-related processes. A comparison of gene categories confirms that R. irregularis is close to the Mucoromycotina. The AMF obligate biotrophy is not explained by genome erosion or any related loss of metabolic complexity in central metabolism, but is marked by a lack of genes encoding plant cell wall-degrading enzymes and of genes involved in toxin and thiamine synthesis. A battery of mycorrhiza-induced secreted proteins is expressed in symbiotic tissues. The present comprehensive repertoire of R. irregularis genes provides a basis for future research on symbiosis-related mechanisms in Glomeromycota.


Asunto(s)
Evolución Molecular , Genoma Fúngico/genética , Glomeromycota/genética , Micorrizas/genética , Plantas/microbiología , Simbiosis/genética , Secuencia de Bases , Datos de Secuencia Molecular , Análisis de Secuencia de ADN
12.
Plant Cell ; 24(10): 4281-93, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23115249

RESUMEN

Plant mitogen-activated protein kinases (MAPKs) are involved in important processes, including stress signaling and development. In a functional yeast screen, we identified mutations that render Arabidopsis thaliana MAPKs constitutively active (CA). Importantly, CA-MAPKs maintain their specificity toward known activators and substrates. As a proof-of-concept, Arabidopsis MAPK4 (MPK4) function in plant immunity was investigated. In agreement with the phenotype of mpk4 mutants, CA-MPK4 plants were compromised in pathogen-induced salicylic acid accumulation and disease resistance. MPK4 activity was found to negatively regulate pathogen-associated molecular pattern-induced reactive oxygen species production but had no impact on callose deposition, indicating that CA-MPK4 allows discriminating between processes regulated by MPK4 activity from processes indirectly affected by mpk4 mutation. Finally, MPK4 activity was also found to compromise effector-triggered immunity conditioned by the Toll Interleukin-1 Receptor-nucleotide binding (NB)-Leu-rich repeat (LRR) receptors RPS4 and RPP4 but not by the coiled coil-NB-LRR receptors RPM1 and RPS2. Overall, these data reveal important insights on how MPK4 regulates plant defenses and establishes that CA-MAPKs offer a powerful tool to analyze the function of plant MAPK pathways.


Asunto(s)
Proteínas de Arabidopsis/fisiología , Arabidopsis/enzimología , Sistema de Señalización de MAP Quinasas , Proteínas Quinasas Activadas por Mitógenos/fisiología , Inmunidad de la Planta/genética , Arabidopsis/inmunología , Arabidopsis/microbiología , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Resistencia a la Enfermedad/genética , Proteínas Quinasas Activadas por Mitógenos/genética , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Pseudomonas syringae/inmunología , Especies Reactivas de Oxígeno/metabolismo , Ácido Salicílico/metabolismo , Especificidad por Sustrato
13.
Plant Physiol ; 159(2): 798-809, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22535420

RESUMEN

Plasma membrane-resident receptor kinases (RKs) initiate signaling pathways important for plant immunity and development. In Arabidopsis (Arabidopsis thaliana), the receptor for the elicitor-active peptide epitope of bacterial flagellin, flg22, is encoded by FLAGELLIN SENSING2 (FLS2), which promotes plant immunity. Despite its relevance, the molecular components regulating FLS2-mediated signaling remain largely unknown. We show that plasma membrane ARABIDOPSIS-AUTOINHIBITED Ca(2+)-ATPase (ACA8) forms a complex with FLS2 in planta. ACA8 and its closest homolog ACA10 are required for limiting the growth of virulent bacteria. One of the earliest flg22 responses is the transient increase of cytosolic Ca(2+) ions, which is crucial for many of the well-described downstream responses (e.g. generation of reactive oxygen species and the transcriptional activation of defense-associated genes). Mutant aca8 aca10 plants show decreased flg22-induced Ca(2+) and reactive oxygen species bursts and exhibit altered transcriptional reprogramming. In particular, mitogen-activated protein kinase-dependent flg22-induced gene expression is elevated, whereas calcium-dependent protein kinase-dependent flg22-induced gene expression is reduced. These results demonstrate that the fine regulation of Ca(2+) fluxes across the plasma membrane is critical for the coordination of the downstream microbe-associated molecular pattern responses and suggest a mechanistic link between the FLS2 receptor complex and signaling kinases via the secondary messenger Ca(2+). ACA8 also interacts with other RKs such as BRI1 and CLV1 known to regulate plant development, and both aca8 and aca10 mutants show morphological phenotypes, suggesting additional roles for ACA8 and ACA10 in developmental processes. Thus, Ca(2+) ATPases appear to represent general regulatory components of RK-mediated signaling pathways.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/inmunología , ATPasas Transportadoras de Calcio/metabolismo , Inmunidad de la Planta , Transducción de Señal , Arabidopsis/enzimología , Arabidopsis/genética , Arabidopsis/microbiología , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/inmunología , Proteínas Bacterianas/inmunología , Calcio/metabolismo , ATPasas Transportadoras de Calcio/genética , ATPasas Transportadoras de Calcio/inmunología , Membrana Celular/enzimología , Membrana Celular/metabolismo , Citosol/metabolismo , Transferencia Resonante de Energía de Fluorescencia , Regulación de la Expresión Génica de las Plantas , Análisis de Secuencia por Matrices de Oligonucleótidos , Fenotipo , Mapeo de Interacción de Proteínas , Proteínas Quinasas/metabolismo , Pseudomonas syringae/inmunología , Pseudomonas syringae/patogenicidad , Especies Reactivas de Oxígeno , Transcripción Genética
14.
Plant Cell ; 22(5): 1575-91, 2010 May.
Artículo en Inglés | MEDLINE | ID: mdl-20484005

RESUMEN

Tudor-SN (TSN) copurifies with the RNA-induced silencing complex in animal cells where, among other functions, it is thought to act on mRNA stability via the degradation of specific dsRNA templates. In plants, TSN has been identified biochemically as a cytoskeleton-associated RNA binding activity. In eukaryotes, it has recently been identified as a conserved primary target of programmed cell death-associated proteolysis. We have investigated the physiological role of TSN by isolating null mutations for two homologous genes in Arabidopsis thaliana. The double mutant tsn1 tsn2 displays only mild growth phenotypes under nonstress conditions, but germination, growth, and survival are severely affected under high salinity stress. Either TSN1 or TSN2 alone can complement the double mutant, indicating their functional redundancy. TSN accumulates heterogeneously in the cytosol and relocates transiently to a diffuse pattern in response to salt stress. Unexpectedly, stress-regulated mRNAs encoding secreted proteins are significantly enriched among the transcripts that are underrepresented in tsn1 tsn2. Our data also reveal that TSN is important for RNA stability of its targets. These findings show that TSN is essential for stress tolerance in plants and implicate TSN in new, potentially conserved mechanisms acting on mRNAs entering the secretory pathway.


Asunto(s)
Adaptación Fisiológica/genética , Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas , Estabilidad del ARN/genética , Proteínas de Unión al ARN/metabolismo , Estrés Fisiológico/genética , Adaptación Fisiológica/efectos de los fármacos , Arabidopsis/citología , Arabidopsis/efectos de los fármacos , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/genética , Citoplasma/efectos de los fármacos , Citoplasma/metabolismo , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Genes de Plantas/genética , Prueba de Complementación Genética , Datos de Secuencia Molecular , Mutación/genética , Raíces de Plantas/citología , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/genética , Raíces de Plantas/crecimiento & desarrollo , Transporte de Proteínas/efectos de los fármacos , Estabilidad del ARN/efectos de los fármacos , ARN Mensajero/genética , ARN Mensajero/metabolismo , Proteínas de Unión al ARN/genética , Complejo Silenciador Inducido por ARN/metabolismo , Semillas/efectos de los fármacos , Semillas/genética , Cloruro de Sodio/farmacología , Suelo , Estrés Fisiológico/efectos de los fármacos
15.
Curr Opin Plant Biol ; 12(4): 437-43, 2009 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-19608452

RESUMEN

Membrane compartmentalization and trafficking are pivotal for eukaryotic life and demand a higher order of coordination. Even in their resting state, most plant cells exhibit a polarized localization of membrane compartments, which is redirected when plant cells are attacked by microbes. Repositioning of organelles at pathogen penetration sites has been reported since more than a decade; however, only recently has targeted vesicle trafficking upon biotic stress emerged. It has become evident that vesicle secretion and endocytic pathways are engaged in the plant's immune system to actively defend against potential pathogens. By contrast, invasive pathogens have evolved means to utilize these trafficking pathways for the suppression of plant defenses and to the benefit of microbial proliferation. This review summarizes recent findings of host intracellular endomembrane adaptations in response to pathogens and how pathogens exploit them.


Asunto(s)
Endocitosis , Orgánulos/metabolismo , Plantas/metabolismo , Vesículas Transportadoras/metabolismo , Bacterias/metabolismo , Hongos/metabolismo , Inmunidad Innata , Modelos Biológicos , Enfermedades de las Plantas/inmunología , Enfermedades de las Plantas/microbiología , Plantas/inmunología , Plantas/microbiología , Transporte de Proteínas
16.
Mol Plant ; 1(2): 198-217, 2008 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-19825533

RESUMEN

The mode of abscisic acid (ABA) action, and its relations to drought adaptive responses in particular, has been a captivating area of plant hormone research for much over a decade. The hormone triggers stomatal closure to limit water loss through transpiration, as well as mobilizes a battery of genes that presumably serve to protect the cells from the ensuing oxidative damage in prolonged stress. The signaling network orchestrating these various responses is, however, highly complex. This review summarizes several significant advances made within the last few years. The biosynthetic pathway of the hormone is now almost completely elucidated, with the latest identification of the ABA4 gene encoding a neoxanthin synthase, which seems essential for de novo ABA biosynthesis during water stress. This leads to the interesting question on how ABA is then delivered to perception sites. In this respect, regulated transport has attracted renewed focus by the unexpected finding of a shoot-to-root translocation of ABA during drought response, and at the cellular level, by the identification of a beta-galactosidase that releases biologically active ABA from inactive ABA-glucose ester. Surprising candidate ABA receptors were also identified in the form of the Flowering Time Control Protein A (FCA) and the Chloroplastic Magnesium Protoporphyrin-IX Chelatase H subunit (CHLH) in chloroplast-nucleus communication, both of which have been shown to bind ABA in vitro. On the other hand, the protein(s) corresponding to the physiologically detectable cell-surface ABA receptor(s) is (are) still not known with certainty. Genetic and physiological studies based on the guard cell have reinforced the central importance of reversible phosphorylation in modulating rapid ABA responses. Sucrose Non-Fermenting Related Kinases (SnRK), Calcium-Dependent Protein Kinases (CDPK), Protein Phosphatases (PP) of the 2C and 2A classes figure as prominent regulators in this single-cell model. Identifying their direct in vivo targets of regulation, which may include H(+)-ATPases, ion channels, 14-3-3 proteins and transcription factors, will logically be the next major challenge. Emerging evidence also implicates ABA as a repressor of innate immune response, as hinted by the highly similar roster of genes elicited by certain pathogens and ABA. Undoubtedly, the most astonishing revelation is that ABA is not restricted to plants and mosses, but overwhelming evidence now indicates that it also exists in metazoans ranging from the most primitive to the most advance on the evolution scale (sponges to humans). In metazoans, ABA has healing properties, and plays protective roles against both environmental and pathogen related injuries. These cross-kingdom comparisons have shed light on the surprising ancient origin of ABA and its attendant mechanisms of signal transduction.


Asunto(s)
Ácido Abscísico/biosíntesis , Ácido Abscísico/fisiología , Fenómenos Fisiológicos de las Plantas , Aclimatación/fisiología , Transferasas Alquil y Aril/genética , Transferasas Alquil y Aril/metabolismo , Arabidopsis/enzimología , Arabidopsis/genética , Cloroplastos/fisiología , Sequías , Geranilgeranil-Difosfato Geranilgeraniltransferasa , Oxidorreductasas/genética , Transducción de Señal , Nicotiana/enzimología , Vicia faba/genética , Vicia faba/fisiología
17.
Development ; 134(4): 681-90, 2007 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-17215297

RESUMEN

In plants, the developmental mechanisms that regulate the positioning of lateral organs along the primary root are currently unknown. We present evidence on how lateral root initiation is controlled in a spatiotemporal manner in the model plant Arabidopsis thaliana. First, lateral roots are spaced along the main axis in a regular left-right alternating pattern that correlates with gravity-induced waving and depends on AUX1, an auxin influx carrier essential for gravitropic response. Second, we found evidence that the priming of pericycle cells for lateral root initiation might take place in the basal meristem, correlating with elevated auxin sensitivity in this part of the root. This local auxin responsiveness oscillates with peaks of expression at regular intervals of 15 hours. Each peak in the auxin-reporter maximum correlates with the formation of a consecutive lateral root. Third, auxin signaling in the basal meristem triggers pericycle cells for lateral root initiation prior to the action of INDOLE-3-ACETIC ACID14 (SOLITARY ROOT).


Asunto(s)
Proteínas de Arabidopsis/fisiología , Ácidos Indolacéticos/farmacología , Meristema/fisiología , Raíces de Plantas/crecimiento & desarrollo , Arabidopsis/crecimiento & desarrollo , Relojes Biológicos , Gravitropismo , Reguladores del Crecimiento de las Plantas/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...