Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 113
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Carbohydr Polym ; 337: 122112, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38710545

RESUMEN

The growing concerns on environmental pollution and sustainability have raised the interest on the development of functional biobased materials for different applications, including food packaging, as an alternative to the fossil resources-based counterparts, currently available in the market. In this work, functional wood inspired biopolymeric nanocomposite films were prepared by solvent casting of suspensions containing commercial beechwood xylans, cellulose nanofibers (CNF) and lignosulfonates (magnesium or sodium), in a proportion of 2:5:3 wt%, respectively. All films presented good homogeneity, translucency, and thermal stability up to 153 °C. The incorporation of CNF into the xylan/lignosulfonates matrix provided good mechanical properties to the films (Young's modulus between 1.08 and 3.79 GPa and tensile strength between 12.75 and 14.02 MPa). The presence of lignosulfonates imparted the films with antioxidant capacity (DPPH radical scavenging activity from 71.6 to 82.4 %) and UV barrier properties (transmittance ≤19.1 % (200-400 nm)). Moreover, the films obtained are able to successfully delay the browning of packaged fruit stored over 7 days at 4 °C. Overall, the obtained results show the potential of using low-cost and eco-friendly resources for the development of sustainable active food packaging materials.


Asunto(s)
Celulosa , Embalaje de Alimentos , Lignina , Lignina/análogos & derivados , Nanocompuestos , Nanofibras , Resistencia a la Tracción , Madera , Xilanos , Embalaje de Alimentos/métodos , Lignina/química , Nanocompuestos/química , Celulosa/química , Celulosa/análogos & derivados , Madera/química , Nanofibras/química , Xilanos/química , Antioxidantes/química , Frutas/química
2.
Microbiology (Reading) ; 170(5)2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38739436

RESUMEN

Endolysins are bacteriophage (or phage)-encoded enzymes that catalyse the peptidoglycan breakdown in the bacterial cell wall. The exogenous action of recombinant phage endolysins against Gram-positive organisms has been extensively studied. However, the outer membrane acts as a physical barrier when considering the use of recombinant endolysins to combat Gram-negative bacteria. This study aimed to evaluate the antimicrobial activity of the SAR-endolysin LysKpV475 against Gram-negative bacteria as single or combined therapies, using an outer membrane permeabilizer (polymyxin B) and a phage, free or immobilized in a pullulan matrix. In the first step, the endolysin LysKpV475 in solution, alone and combined with polymyxin B, was tested in vitro and in vivo against ten Gram-negative bacteria, including highly virulent strains and multidrug-resistant isolates. In the second step, the lyophilized LysKpV475 endolysin was combined with the phage phSE-5 and investigated, free or immobilized in a pullulan matrix, against Salmonella enterica subsp. enterica serovar Typhimurium ATCC 13311. The bacteriostatic action of purified LysKpV475 varied between 8.125 µg ml-1 against Pseudomonas aeruginosa ATCC 27853, 16.25 µg ml-1 against S. enterica Typhimurium ATCC 13311, and 32.50 µg ml-1 against Klebsiella pneumoniae ATCC BAA-2146 and Enterobacter cloacae P2224. LysKpV475 showed bactericidal activity only for P. aeruginosa ATCC 27853 (32.50 µg ml-1) and P. aeruginosa P2307 (65.00 µg ml-1) at the tested concentrations. The effect of the LysKpV475 combined with polymyxin B increased against K. pneumoniae ATCC BAA-2146 [fractional inhibitory concentration index (FICI) 0.34; a value lower than 1.0 indicates an additive/combined effect] and S. enterica Typhimurium ATCC 13311 (FICI 0.93). A synergistic effect against S. enterica Typhimurium was also observed when the lyophilized LysKpV475 at ⅔ MIC was combined with the phage phSE-5 (m.o.i. of 100). The lyophilized LysKpV475 immobilized in a pullulan matrix maintained a significant Salmonella reduction of 2 logs after 6 h of treatment. These results demonstrate the potential of SAR-endolysins, alone or in combination with other treatments, in the free form or immobilized in solid matrices, which paves the way for their application in different areas, such as in biocontrol at the food processing stage, biosanitation of food contact surfaces and biopreservation of processed food in active food packing.


Asunto(s)
Antibacterianos , Endopeptidasas , Glucanos , Polimixina B , Fagos de Salmonella , Endopeptidasas/farmacología , Endopeptidasas/química , Endopeptidasas/metabolismo , Polimixina B/farmacología , Antibacterianos/farmacología , Antibacterianos/química , Fagos de Salmonella/genética , Fagos de Salmonella/fisiología , Fagos de Salmonella/química , Glucanos/química , Glucanos/farmacología , Animales , Pruebas de Sensibilidad Microbiana , Bacterias Gramnegativas/efectos de los fármacos , Bacterias Gramnegativas/virología , Ratones , Salmonella typhimurium/virología , Salmonella typhimurium/efectos de los fármacos , Bacteriófagos/fisiología , Bacteriófagos/genética , Proteínas Virales/genética , Proteínas Virales/metabolismo , Proteínas Virales/farmacología , Proteínas Virales/química
3.
Mater Today Bio ; 22: 100733, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37533730

RESUMEN

Antimicrobial photodynamic therapy (aPDT) is a potent tool to surpass the global rise of antimicrobial resistance; still, the effective topical administration of photosensitizers remains a challenge. Biopolymer-based adhesive films can safely extend the residence time of photosensitizers. However, their wide application is narrowed by their limited water absorption capacity and gel strength. In this study, pullulan-based films with a switchable character (from a solid film to an adhesive hydrogel) were developed. This was accomplished by the incorporation of a betaine-based deep eutectic solvent (DES) containing curcumin (4.4 µg.cm-2) into the pullulan films, which tuned the films' skin moisture absorption ability, and therefore they switch into an adhesive hydrogel capable of delivering the photosensitizer. The obtained transparent films presented higher extensibility (elongation at break up to 338.2%) than the pullulan counterparts (6.08%), when stored at 54% of relative humidity, and the corresponding hydrogels a 4-fold higher adhesiveness than commercial hydrogels. These non-cytotoxic adhesives allowed the inactivation (∼5 log reduction), down to the detection limit of the method, of multiresistant strains of Staphylococcus aureus in ex vivo skin samples. Overall, these materials are promising for aPDT in the treatment of resistant skin infections, while being easily removed from the skin.

4.
ACS Appl Mater Interfaces ; 15(34): 40898-40912, 2023 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-37584276

RESUMEN

3D bioprinting is a versatile technique that allows the fabrication of living tissue analogs through the layer-by-layer deposition of cell-laden biomaterials, viz. bioinks. In this work, composite alginate hydrogel-based bioinks reinforced with curcumin-loaded particles of cellulose esters (CEpCUR) and laden with human keratinocytes (HaCaT) are developed. The addition of the CEpCUR particles, with sizes of 740 ± 147 nm, improves the rheological properties of the inks, increasing their shear stress and viscosity, while preserving the recovery rate and the mechanical and viscoelastic properties of the resulting fully cross-linked hydrogels. Moreover, the presence of these particles reduces the degradation rate of the hydrogels from 26.3 ± 0.8% (ALG) to 18.7 ± 1.3% (ALG:CEpCUR_10%) after 3 days in the culture medium. The 3D structures printed with the ALG:CEpCUR inks reveal increased printing definition and the ability to release curcumin (with nearly 70% of cumulative release after 24 h in PBS). After being laden with HaCaT cells (1.2 × 106 cells mL-1), the ALG:CEpCUR bioinks can be successfully 3D bioprinted, and the obtained living constructs show good dimensional stability and high cell viabilities at 7 days post-bioprinting (nearly 90%), confirming their great potential for application in fields like wound healing.


Asunto(s)
Bioimpresión , Curcumina , Humanos , Hidrogeles/química , Curcumina/farmacología , Celulosa , Alginatos/química , Impresión Tridimensional , Andamios del Tejido/química , Bioimpresión/métodos , Ingeniería de Tejidos/métodos
5.
ACS Appl Mater Interfaces ; 15(21): 25860-25872, 2023 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-37200222

RESUMEN

Biopolymeric injectable hydrogels are promising biomaterials for myocardial regeneration applications. Besides being biocompatible, they adjust themselves, perfectly fitting the surrounding tissue. However, due to their nature, biopolymeric hydrogels usually lack desirable functionalities, such as antioxidant activity and electrical conductivity, and in some cases, mechanical performance. Protein nanofibrils (NFs), such as lysozyme nanofibrils (LNFs), are proteic nanostructures with excellent mechanical performance and antioxidant activity, which can work as nanotemplates to produce metallic nanoparticles. Here, gold nanoparticles (AuNPs) were synthesized in situ in the presence of LNFs, and the obtained hybrid AuNPs@LNFs were incorporated into gelatin-hyaluronic acid (HA) hydrogels for myocardial regeneration applications. The resulting nanocomposite hydrogels showed improved rheological properties, mechanical resilience, antioxidant activity, and electrical conductivity, especially for the hydrogels containing AuNPs@LNFs. The swelling and bioresorbability ratios of these hydrogels are favorably adjusted at lower pH levels, which correspond to the ones in inflamed tissues. These improvements were observed while maintaining important properties, namely, injectability, biocompatibility, and the ability to release a model drug. Additionally, the presence of AuNPs allowed the hydrogels to be monitorable through computer tomography. This work demonstrates that LNFs and AuNPs@LNFs are excellent functional nanostructures to formulate injectable biopolymeric nanocomposite hydrogels for myocardial regeneration applications.


Asunto(s)
Gelatina , Nanopartículas del Metal , Nanogeles , Oro , Ácido Hialurónico/química , Antioxidantes , Muramidasa , Materiales Biocompatibles/química , Cicatrización de Heridas , Miocardio , Hidrogeles/farmacología , Hidrogeles/química , Ingeniería de Tejidos/métodos
6.
Polymers (Basel) ; 15(5)2023 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-36904310

RESUMEN

Nowadays, packaging applications require the use of advanced materials as well as production methods that have a low environmental impact. In this study, a solvent-free photopolymerizable paper coating was developed using two acrylic monomers (2-ethylhexyl acrylate and isobornyl methacrylate). A copolymer, with a molar ratio of 2-ethylhexyl acrylate/isobornyl methacrylate of 0.64/0.36, was prepared and used as the main component of the coating formulations (50 and 60 wt%). A mixture of the monomers with the same proportion was used as a reactive solvent, yielding formulations with 100% solids. The coated papers showed an increase in the pick-up values from 6.7 to 32 g/m2 depending on the formulation used and the number of coating layers (up to two). The coated papers maintained their mechanical properties and presented improved air barrier properties (Gurley's air resistivity of ≈25 s for the higher pick-up values). All the formulations promoted a significant increase in the paper's water contact angle (all higher than 120 °) and a remarkable decrease in their water absorption (Cobb values decrease from 108 to 11 g/m2). The results confirm the potential of these solventless formulations for fabricating hydrophobic papers with potential application in packaging, following a quick, effective, and more sustainable approach.

7.
Int J Biol Macromol ; 229: 849-860, 2023 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-36572084

RESUMEN

The development of suitable bioinks is an important research topic in the field of three-dimensional (3D) bioprinting. Herein, novel hydrogel-based bioinks composed of nanofibrillated cellulose (NFC) and gellan gum (GG) in different NFC/GG mass proportions (90:10, 80:20, 70:30, and 60:40) were developed and characterized. The increase in the content of GG, as well as its combination with NFC, enhanced their rheological properties, increasing both storage (G') and loss (G") moduli and the G' recovery capacity of the hydrogels (from 70.05 ± 3.06 % (90:10) to 82.63 ± 1.21 % (60:40)), as well as their mechanical properties, increasing the compressive stiffness and stress from 114.02 ± 10.93 Pa (90:10) to 337.16 ± 34.03 Pa (60:40) and from 18.27 ± 1.32 kPa (90:10) to 47.17 ± 3.59 kPa (60:40), respectively. The hydrogels were non-cytotoxic against human keratinocyte cells (HaCaT), with cell viabilities above 70 % for up to 72 h. The hydrogel 60:40 was loaded with HaCaT cells (3 × 106 cells mL-1) and bioprinted. The cell viability was maintained elevated until day 7 (90 ± 3 %) after bioprinting. These results highlight that the combination of these two biopolymers was a good strategy for the development of novel hydrogel-based bioinks for extrusion 3D bioprinting applications.


Asunto(s)
Bioimpresión , Hidrogeles , Humanos , Hidrogeles/farmacología , Ingeniería de Tejidos/métodos , Celulosa/farmacología , Bioimpresión/métodos , Impresión Tridimensional , Andamios del Tejido
8.
Macromol Biosci ; 23(1): e2200323, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36189897

RESUMEN

The aim of this study is to prepare dissolvable biopolymeric microneedle (MN) patches composed solely of sodium carboxymethylcellulose (CMC), a water-soluble cellulose derivative with good film-forming ability, by micromolding technology for the transdermal delivery of diclofenac sodium salt (DCF). The MNs with ≈456 µm in height displayed adequate morphology, thermal stability up to 200 °C, and the required mechanical strength for skin insertion (>0.15 N needle-1 ). Experiments in ex vivo abdominal human skin demonstrate the insertion capability of the CMC_DCF MNs up to 401 µm in depth. The dissolution of the patches in saline buffer results in a maximum cumulative release of 98% of diclofenac after 40 min, and insertion in a skin simulant reveals that all MNs completely dissolve within 10 min. Moreover, the MN patches are noncytotoxic toward human keratinocytes. These results suggest that the MN patches produced with CMC are promising biopolymeric systems for the rapid administration of DCF in a minimally invasive manner.


Asunto(s)
Carboximetilcelulosa de Sodio , Diclofenaco , Humanos , Diclofenaco/farmacología , Administración Cutánea , Piel , Sistemas de Liberación de Medicamentos/métodos
9.
Front Bioeng Biotechnol ; 10: 1059097, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36582838

RESUMEN

Polysaccharides and proteins are extensively used for the design of advanced sustainable materials. Owing to the high aspect ratio and specific surface area, ease of modification, high mechanical strength and thermal stability, renewability, and biodegradability, biopolymeric nanofibrils are gaining growing popularity amongst the catalog of nanostructures exploited in a panoply of fields. These include the nanocomposites, paper and packaging, environmental remediation, electronics, energy, and biomedical applications. In this review, recent trends on the use of cellulose and protein nanofibrils as versatile substrates for the design of high-performance nanomaterials are assessed. A concise description of the preparation methodologies and characteristics of cellulosic nanofibrils, namely nanofibrillated cellulose (NFC), bacterial nanocellulose (BNC), and protein nanofibrils is presented. Furthermore, the use of these nanofibrils in the production of sustainable materials, such as membranes, films, and patches, amongst others, as well as their major domains of application, are briefly described, with focus on the works carried out at the BioPol4Fun Research Group (Innovation in BioPolymer based Functional Materials and Bioactive Compounds) from the Portuguese associate laboratory CICECO-Aveiro Institute of Materials (University of Aveiro). The potential for partnership between both types of nanofibrils in advanced material development is also reviewed. Finally, the critical challenges and opportunities for these biobased nanostructures for the development of functional materials are addressed.

10.
Bioengineering (Basel) ; 9(12)2022 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-36551022

RESUMEN

Towards the end of 2019 in Wuhan, suspicions of a new dangerous virus circulating in the air began to arise. It was the start of the world pandemic coronavirus disease 2019 (COVID-19). Since then, considerable research data and review papers about this virus have been published. Hundreds of researchers have shared their work in order to achieve a better comprehension of this disease, all with the common goal of overcoming this pandemic. The coronavirus is structurally similar to influenza A. Both are RNA viruses and normally associated with comparable infection symptoms. In this review, different case studies targeting polymeric materials were appraised to highlight them as an indispensable tool to fight these RNA viruses. In particular, the main focus was how polymeric materials, and their versatile features could be applied in different stages of viral disease, i.e., in protection, detection and treatment.

11.
Polymers (Basel) ; 14(17)2022 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-36080526

RESUMEN

Green composites made of bioplastics reinforced with natural fibers have gained considerable attention over recent years. However, the use of natural fibers in composites usually compromise some key properties, such as the impact strength and the processability of the final materials. In the present study, two distinct additives, namely an epoxidized linseed oil (ELO) and a sugar-based surfactant, viz. GlucoPure® Sense (GPS), were tested in composite formulations of poly(lactic acid) (PLA) or poly(hydroxybutyrate) (PHB) reinforced with micronized pulp fibers. Both additives showed a plasticizing effect, which led to a decrease in the Young's and flexural moduli and strengths. At the same time, the elongation and flexural strain at break were considerably improved on some formulations. The melt flow rate was also remarkably improved with the incorporation of the additives. In the PHB-based composites, an increment of 230% was observed upon incorporation of 7.5 wt.% ELO and, in composites based on PLA, an increase of around 155% was achieved with the introduction of 2.5 wt.% GPS. ELO also increased the impact strength to a maximum of 29 kJ m-2, in formulations with PLA. For most composites, a faster degradation rate was observed on the formulations with the additives, reaching, in the case of PHB composites with GPS, a noteworthy weight loss over 75% under burial testing in compost medium at room temperature.

12.
Nanomaterials (Basel) ; 12(13)2022 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-35808026

RESUMEN

In this study, alginate nanocomposite hydrogel bioinks reinforced with lysozyme nanofibers (LNFs) were developed. Alginate-LNF (A-LNF) suspensions with different LNF contents (1, 5 and 10 wt.%) were prepared and pre-crosslinked with 0.5% (w/v) CaCl2 to formulate A-LNF inks. These inks exhibit proper shear-thinning behavior and good recovery properties (~90%), with the pre-crosslinking step playing a crucial role. A-LNF fully crosslinked hydrogels (with 2% (w/v) CaCl2) that mimic 3D printing scaffolds were prepared, and it was observed that the addition of LNFs improved several properties of the hydrogels, such as the morphology, swelling and degradation profiles, and mechanical properties. All formulations are also noncytotoxic towards HaCaT cells. The printing parameters and 3D scaffold model were then optimized, with A-LNF inks showing improved printability. Selected A-LNF inks (A-LNF0 and A-LNF5) were loaded with HaCaT cells (cell density 2 × 106 cells mL-1), and the cell viability within the bioprinted scaffolds was evaluated for 1, 3 and 7 days, with scaffolds printed with the A-LNF5 bioink showing the highest values for 7 days (87.99 ± 1.28%). Hence, A-LNF bioinks exhibited improved rheological performance, printability and biological properties representing a good strategy to overcome the main limitations of alginate-based bioinks.

13.
Int J Mol Sci ; 23(12)2022 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-35743006

RESUMEN

Three-dimensional (3D) bioprinting is an innovative technology in the biomedical field, allowing the fabrication of living constructs through an approach of layer-by-layer deposition of cell-laden inks, the so-called bioinks. An ideal bioink should possess proper mechanical, rheological, chemical, and biological characteristics to ensure high cell viability and the production of tissue constructs with dimensional stability and shape fidelity. Among the several types of bioinks, hydrogels are extremely appealing as they have many similarities with the extracellular matrix, providing a highly hydrated environment for cell proliferation and tunability in terms of mechanical and rheological properties. Hydrogels derived from natural polymers, and polysaccharides, in particular, are an excellent platform to mimic the extracellular matrix, given their low cytotoxicity, high hydrophilicity, and diversity of structures. In fact, polysaccharide-based hydrogels are trendy materials for 3D bioprinting since they are abundant and combine adequate physicochemical and biomimetic features for the development of novel bioinks. Thus, this review portrays the most relevant advances in polysaccharide-based hydrogel bioinks for 3D bioprinting, focusing on the last five years, with emphasis on their properties, advantages, and limitations, considering polysaccharide families classified according to their source, namely from seaweed, higher plants, microbial, and animal (particularly crustaceans) origin.


Asunto(s)
Bioimpresión , Animales , Bioimpresión/métodos , Hidrogeles/química , Tinta , Polisacáridos , Impresión Tridimensional , Ingeniería de Tejidos/métodos , Andamios del Tejido/química
14.
Pharmaceutics ; 14(4)2022 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-35456661

RESUMEN

The transdermal administration of nonsteroidal anti-inflammatory drugs (NSAIDs) is a valuable and safer alternative to their oral intake. However, most of these drugs display low water solubility, which makes their incorporation into hydrophilic biopolymeric drug-delivery systems difficult. To overcome this drawback, aqueous solutions of bio-based deep eutectic solvents (DES) were investigated to enhance the solubility of ibuprofen, a widely used NSAID, leading to an increase in its solubility of up to 7917-fold when compared to its water solubility. These DES solutions were shown to be non-toxic to macrophages with cell viabilities of 97.4% (at ibuprofen concentrations of 0.25 mM), while preserving the anti-inflammatory action of the drug. Their incorporation into alginate-based hydrogels resulted in materials with a regular structure and higher flexibility. These hydrogels present a sustained release of the drug, which is able, when containing the DES aqueous solution comprising ibuprofen, to deliver 93.5% of the drug after 8 h in PBS. Furthermore, these hydrogels were able to improve the drug permeation across human skin by 8.5-fold in comparison with the hydrogel counterpart containing only ibuprofen. This work highlights the possibility to remarkably improve the transdermal administration of NSAIDs by combining new drug formulations based on DES and biopolymeric drug delivery systems.

15.
Materials (Basel) ; 15(5)2022 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-35269213

RESUMEN

Bacterial nanocellulose (BNC) membranes, with remarkable physical and mechanical properties, emerged as a versatile biopolymeric carrier of bioactive compounds for skin care applications. In this study, BNC membranes were loaded with glycerol (as plasticizer and humectant agent) and different doses (1-3 µg cm-2) of an aqueous extract obtained from the hydro-distillation of Eucalyptus globulus Labill. leaves (HDE), for application as sheet facial masks. All membranes are resistant and highly malleable at dry and wet states, with similar or even better mechanical properties than those of a commercial BNC mask. Moreover, the HDE was found to confer a dose-dependent antioxidant activity to pure BNC. Additionally, upon 3 months of storage at 22-25 °C and 52% relative humidity (RH) or at 40 °C and 75% RH, it was confirmed that the antioxidant activity and the macroscopic aspect of the membrane with 2 µg cm-2 of HDE were maintained. Membranes were also shown to be non-cytotoxic towards HaCaT and NIH/3T3 cells, and the membrane with 2 µg cm-2 of HDE caused a significant reduction in the senescence-associated ß-galactosidase activity in NIH/3T3 cells. These findings suggest the suitability and potential of the obtained membranes as bioactive facial masks for anti-aging applications.

16.
Nanomaterials (Basel) ; 12(3)2022 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-35159776

RESUMEN

Natural polymers, such as polysaccharides and proteins, are being extensively utilized as substrates to create advanced materials [...].

17.
Int J Pharm ; 616: 121566, 2022 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-35151818

RESUMEN

The critical scenario of antimicrobial resistance to antibiotics highlights the need for improved therapeutics and/or formulations. Herein, we demonstrate that deep eutectic solvents (DES) formulations are very promising to remarkably improve the solubility, stability and therapeutic efficacy of antibiotics, such as ciprofloxacin. DES aqueous solutions enhance the solubility of ciprofloxacin up to 430-fold while extending the antibiotic stability. The developed formulations can improve, by 2 to 4-fold, the susceptibility of Gram-negative (Escherichia coli and Pseudomonas aeruginosa) and Gram-positive (Staphylococcus aureus) bacteria to the antibiotic. They also improve the therapeutic efficacy at concentrations where bacteria present resistance, without promoting tolerance development to ciprofloxacin. Furthermore, the incorporation of DES decreases the toxicity of ciprofloxacin towards immortalized human epidermal keratinocytes (HaCat cells). The results herein reveal the pioneering use of DES in fluoroquinolone-based formulations and their impact on the antibiotic's characteristics and on its therapeutic action.


Asunto(s)
Antibacterianos , Disolventes Eutécticos Profundos , Antibacterianos/farmacología , Ciprofloxacina/farmacología , Humanos , Pruebas de Sensibilidad Microbiana , Solventes , Staphylococcus aureus
18.
Int J Mol Sci ; 23(4)2022 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-35216072

RESUMEN

Hydroxymethylfurfural (5-HMF) is a key platform chemical, essential for the production of other chemicals, as well as fuels. Despite its importance, the production methods applied so far still lack in sustainability. In this work, acidic deep eutectic solvents (DES), acting both as solvent and catalyst, were studied for the conversion of fructose into 5-HMF using microwave-assisted reactions. These solvents were screened and optimized by varying the hydrogen bond donor (HBD) and hydrogen bond acceptor (HBA). The bio-based solvent γ-valerolactone (GVL) was also applied as additive, leading to a boost in 5-HMF yield. Then, a response surface methodology was applied to further optimize operating conditions, such as reaction time, temperature and wt.% of added GVL. The highest 5-HMF yield attained, after optimization, was 82.4% at 130 °C, in 4 min of reaction time and with the addition of 10 wt.% of GVL. Moreover, a process for 5-HMF recovery and DES reuse was developed through the use of the bio-based solvent 2-methyltetrahydrofuran (2-Me-THF), allowing at least three cycles of 5-HMF production with minimal yield losses, while maintaining the purity of the isolated 5-HMF and the efficacy of the reaction media.


Asunto(s)
Disolventes Eutécticos Profundos/química , Furaldehído/análogos & derivados , Catálisis , Fructosa/química , Furaldehído/química , Furanos/química , Enlace de Hidrógeno , Microondas , Temperatura
19.
Molecules ; 26(23)2021 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-34885956

RESUMEN

The addition of alkali metal halide salts to acidic deep eutectic solvents is here reported as an effective way of boosting xylan conversion into furfural. These salts promote an increase in xylose dehydration due to the cation and anion interactions with the solvent being a promising alternative to the use of harsh operational conditions. Several alkali metal halides were used as additives in the DES composed of cholinium chloride and malic acid ([Ch]Cl:Mal) in a molar ratio of 1:3, with 5 wt.% of water. These mixtures were then used as both solvent and catalyst to produce furfural directly from xylan through microwave-assisted reactions. Preliminary assays were carried out at 150 and 130 °C to gauge the effect of the different salts in furfural yields. A Response Surface Methodology was then applied to optimize the operational conditions. After an optimization of the different operating conditions, a maximum furfural yield of 89.46 ± 0.33% was achieved using 8.19% of lithium bromide in [Ch]Cl:Mal, 1:3; 5 wt.% water, at 157.3 °C and 1.74 min of reaction time. The used deep eutectic solvent and salt were recovered and reused three times, with 79.7% yield in the third cycle, and the furfural and solvent integrity confirmed.

20.
Nanomaterials (Basel) ; 11(10)2021 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-34685185

RESUMEN

Cellulose, the most abundant natural polymer, is a versatile polysaccharide that is being exploited to manufacture innovative blends, composites, and hybrid materials in the form of membranes, films, coatings, hydrogels, and foams, as well as particles at the micro and nano scales. The application fields of cellulose micro and nanoparticles run the gamut from medicine, biology, and environment to electronics and energy. In fact, the number of studies dealing with sphere-shaped micro and nanoparticles based exclusively on cellulose (or its derivatives) or cellulose in combination with other molecules and macromolecules has been steadily increasing in the last five years. Hence, there is a clear need for an up-to-date narrative that gathers the latest advances on this research topic. So, the aim of this review is to portray some of the most recent and relevant developments on the use of cellulose to produce spherical micro- and nano-sized particles. An attempt was made to illustrate the present state of affairs in terms of the go-to strategies (e.g., emulsification processes, nanoprecipitation, microfluidics, and other assembly approaches) for the generation of sphere-shaped particles of cellulose and derivatives thereof. A concise description of the application fields of these cellulose-based spherical micro and nanoparticles is also presented.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...