Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nitric Oxide ; 124: 68-73, 2022 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-35597408

RESUMEN

OBJECTIVE: To assess the feasibility of Fractional exhaled Nitric Oxide (FeNO) as a simple, non-invasive, cost-effective and portable biomarker and decision support tool for risk stratification of COVID-19 patients. METHODS: We conducted a single-center prospective cohort study of COVID-19 patients whose FeNO levels were measured upon ward admission by the Vivatmo-me handheld device. Demographics, COVID-19 symptoms, and relevant hospitalization details were retrieved from the hospital databases. The patients were divided into those discharged to recover at home and those who died during hospitalization or required admission to an intensive care unit, internal medicine ward, or dedicated facility (severe outcomes group). RESULTS: Fifty-six patients were enrolled. The only significant demographic difference between the severe outcomes patients (n = 14) and the home discharge patients (n = 42) was age (64.21 ± 13.97 vs. 53.98 ± 15.57 years, respectively, P = .04). The admission FeNO measurement was significantly lower in the former group compared with the latter group (15.86 ± 14.74 vs. 25.77 ± 13.79, parts per billion [PPB], respectively, P = .008). Time to severe outcome among patients with FeNO measurements ≤11.8 PPB was significantly shorter compared with patients whose FeNO measured >11.8 PPB (19.25 ± 2.96 vs. 24.41 ± 1.09 days, respectively, 95% confidence interval [CI] 1.06 to 4.25). An admission FeNO ≤11.8 PPB was a significant risk factor for severe outcomes (odds ratio = 12.8, 95% CI: 2.78 to 58.88, P = .001), with a receiver operating characteristics curve of 0.752. CONCLUSIONS: FeNO measurements by the Vivatmo-me handheld device can serve as a biomarker and COVID-19 support tool for medical teams. These easy-to-use, portable, and noninvasive devices may serve as valuable ED bedside tools during a pandemic.


Asunto(s)
COVID-19 , Espiración , Biomarcadores , Pruebas Respiratorias , COVID-19/diagnóstico , Prueba de Óxido Nítrico Exhalado Fraccionado , Humanos , Óxido Nítrico , Estudios Prospectivos , Índice de Severidad de la Enfermedad
2.
Cell Rep ; 36(6): 109521, 2021 08 10.
Artículo en Inglés | MEDLINE | ID: mdl-34380041

RESUMEN

The gut metabolite composition determined by the microbiota has paramount impact on gastrointestinal physiology. However, the role that bacterial metabolites play in communicating with host cells during inflammatory diseases is poorly understood. Here, we aim to identify the microbiota-determined output of the pro-inflammatory metabolite, succinate, and to elucidate the pathways that control transepithelial succinate absorption and subsequent succinate delivery to macrophages. We show a significant increase of succinate uptake into pro-inflammatory macrophages, which is controlled by Na+-dependent succinate transporters in macrophages and epithelial cells. Furthermore, we find that fecal and serum succinate concentrations were markedly augmented in inflammatory bowel diseases (IBDs) and corresponded to changes in succinate-metabolizing gut bacteria. Together, our results describe a succinate production and transport pathway that controls the absorption of succinate generated by distinct gut bacteria and its delivery into macrophages. In IBD, this mechanism fails to protect against the succinate surge, which may result in chronic inflammation.


Asunto(s)
Células Epiteliales/metabolismo , Inflamación/metabolismo , Macrófagos/metabolismo , Ácido Succínico/metabolismo , Animales , Bacterias/metabolismo , Modelos Animales de Enfermedad , Heces/química , Microbioma Gastrointestinal , Regulación de la Expresión Génica , Humanos , Inflamación/genética , Inflamación/patología , Enfermedades Inflamatorias del Intestino/sangre , Enfermedades Inflamatorias del Intestino/genética , Enfermedades Inflamatorias del Intestino/patología , Interferón gamma/farmacología , Lipopolisacáridos/farmacología , Masculino , Ratones Endogámicos C57BL , Sodio/metabolismo , Ácido Succínico/sangre , Xenopus
3.
Science ; 371(6527): 400-405, 2021 01 22.
Artículo en Inglés | MEDLINE | ID: mdl-33479153

RESUMEN

Key to the success of intracellular pathogens is the ability to sense and respond to a changing host cell environment. Macrophages exposed to microbial products undergo metabolic changes that drive inflammatory responses. However, the role of macrophage metabolic reprogramming in bacterial adaptation to the intracellular environment has not been explored. Here, using metabolic profiling and dual RNA sequencing, we show that succinate accumulation in macrophages is sensed by intracellular Salmonella Typhimurium (S. Tm) to promote antimicrobial resistance and type III secretion. S Tm lacking the succinate uptake transporter DcuB displays impaired survival in macrophages and in mice. Thus, S Tm co-opts the metabolic reprogramming of infected macrophages as a signal that induces its own virulence and survival, providing an additional perspective on metabolic host-pathogen cross-talk.


Asunto(s)
Interacciones Huésped-Patógeno , Macrófagos/metabolismo , Salmonella typhimurium/metabolismo , Salmonella typhimurium/patogenicidad , Ácido Succínico/metabolismo , Sistemas de Secreción Tipo III/metabolismo , Animales , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Supervivencia Celular , Transportadores de Ácidos Dicarboxílicos/genética , Transportadores de Ácidos Dicarboxílicos/metabolismo , Modelos Animales de Enfermedad , Femenino , Macrófagos/microbiología , Ratones , Ratones Endogámicos C57BL , RNA-Seq , Salmonella typhimurium/genética , Virulencia
4.
J Am Soc Nephrol ; 30(3): 381-392, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30728179

RESUMEN

BACKGROUND: In the kidney, low urinary citrate increases the risk for developing kidney stones, and elevation of luminal succinate in the juxtaglomerular apparatus increases renin secretion, causing hypertension. Although the association between stone formation and hypertension is well established, the molecular mechanism linking these pathophysiologies has been elusive. METHODS: To investigate the relationship between succinate and citrate/oxalate levels, we assessed blood and urine levels of metabolites, renal protein expression, and BP (using 24-hour telemetric monitoring) in male mice lacking slc26a6 (a transporter that inhibits the succinate transporter NaDC-1 to control citrate absorption from the urinary lumen). We also explored the mechanism underlying this metabolic association, using coimmunoprecipitation, electrophysiologic measurements, and flux assays to study protein interaction and transport activity. RESULTS: Compared with control mice, slc26a6-/- mice (previously shown to have low urinary citrate and to develop calcium oxalate stones) had a 40% decrease in urinary excretion of succinate, a 35% increase in serum succinate, and elevated plasma renin. Slc26a6-/- mice also showed activity-dependent hypertension that was unaffected by dietary salt intake. Structural modeling, confirmed by mutational analysis, identified slc26a6 and NaDC-1 residues that interact and mediate slc26a6's inhibition of NaDC-1. This interaction is regulated by the scaffolding protein IRBIT, which is released by stimulation of the succinate receptor SUCNR1 and interacts with the NaDC-1/slc26a6 complex to inhibit succinate transport by NaDC-1. CONCLUSIONS: These findings reveal a succinate/citrate homeostatic pathway regulated by IRBIT that affects BP and biochemical risk of calcium oxalate stone formation, thus providing a potential molecular link between hypertension and lithogenesis.

5.
Sci Signal ; 11(554)2018 10 30.
Artículo en Inglés | MEDLINE | ID: mdl-30377224

RESUMEN

IRBIT is a multifunctional protein that controls the activity of various epithelial ion transporters including NBCe1-B. Interaction with IRBIT increases NBCe1-B activity and exposes two cryptic Cl--sensing GXXXP sites that enable regulation of NBCe1-B by intracellular Cl- (Cl- in). Here, phosphoproteomic analysis revealed that IRBIT controlled five phosphorylation sites in NBCe1-B that determined both the active conformation of the transporter and its regulation by Cl- in Mutational analysis suggested that the phosphorylation status of Ser232, Ser233, and Ser235 was regulated by IRBIT and determined whether NBCe1 transporters are in active or inactive conformations. The absence of phosphorylation at Ser232, Ser233, or Ser235 produced NBCe1-B in the conformations pSer233/pSer235, pSer232/pSer235, or pSer232/pSer233, respectively. The activity of the pSer233/pSer235 form was similar to that of IRBIT-activated NBCe1-B, but it was insensitive to inhibition by Cl- in The properties of the pSer232/pSer235 form were similar to those of wild-type NBCe1-B, whereas the pSer232/pSer233 form was partially active, further activated by IRBIT, but retained inhibition by Cl- in Furthermore, IRBIT recruited the phosphatase PP1 and the kinase SPAK to control phosphorylation of Ser65, which affected Cl- in sensing by the 32GXXXP36 motif. IRBIT also recruited the phosphatase calcineurin and the kinase CaMKII to control phosphorylation of Ser12, which affected Cl- in sensing by the 194GXXXP198 motif. Ser232, Ser233, and Ser235 are conserved in all NBCe1 variants and affect their activity. These findings reveal how multiple kinase and phosphatase pathways use phosphorylation sites to fine-tune a transporter, which have important implications for epithelial fluid and HCO3 - secretion.


Asunto(s)
Adenosilhomocisteinasa/metabolismo , Calcineurina/metabolismo , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Cloro/metabolismo , Lectinas Tipo C/metabolismo , Proteínas de la Membrana/metabolismo , Secuencias de Aminoácidos , Animales , Sitios de Unión , Biotinilación , Células HEK293 , Humanos , Transporte Iónico , Ratones , Mutación , Oocitos/metabolismo , Fosforilación , Dominios Proteicos , Proteína Fosfatasa 1/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Serina/química , Transducción de Señal , Simportadores de Sodio-Bicarbonato/metabolismo , Factores de Transcripción/metabolismo , Xenopus
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...