Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Vac Sci Technol B Nanotechnol Microelectron ; 28(3): C4AC4A17-C4AC4A24, 2010 May.
Artículo en Inglés | MEDLINE | ID: mdl-24932435

RESUMEN

A complete form of the van der Waals dispersion interaction between an infinitely long anisotropic semiconducting/insulating thin cylinder and an anisotropic half space is derived for all separations between the cylinder and the half space. The derivation proceeds from the theory of dispersion interactions between two anisotropic infinite half spaces as formulated in Phys. Rev. A 71, 042102 (2005). The approach is valid in the retarded as well as nonretarded regimes of the interaction and is coupled with the recently evaluated ab initio dielectric response functions of various semiconducting/insulating single wall carbon nanotubes, enables the authors to evaluate the strength of the van der Waals dispersion interaction for all orientation angles and separations between a thin cylindrical nanotube and the half space. The possibility of repulsive and/or nonmonotonic dispersion interactions is examined in detail.

2.
J Chem Phys ; 124(4): 044709, 2006 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-16460202

RESUMEN

Working at the macroscopic continuum level, we investigate effective van der Waals interactions between two layers within a multilayer assembly. By comparing the pair interactions between two layers with effective pair interactions within an assembly we assess the significant consequences of nonadditivity of van der Waals interactions. This allows us to evaluate the best numerical estimate to date for the Hamaker coefficient of van der Waals interactions in lipid-water multilamellar systems.


Asunto(s)
Algoritmos , Membrana Dobles de Lípidos/química , Fosfolípidos/química , Agua/química , Enlace de Hidrógeno , Propiedades de Superficie
3.
Ultramicroscopy ; 86(3-4): 303-18, 2001 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-11281150

RESUMEN

Valence electron energy loss spectroscopy in a dedicated scanning transmission electron microscope has been used to obtain the interband transition strength of a sigma13 tilt grain boundary in SrTiO3. In a first step the electronic structure of bulk SrTiO3 has been analysed quantitatively by comparing VEELS spectra with vacuum ultraviolet spectra and with ab initio density of states calculations. The electronic structure of a near sigma13 grain boundary and the corresponding dispersion forces were then determined by spatially resolved VEELS. Also the effects of delocalization of the inelastic scattering processes were estimated and compared with results from the literature.

4.
Appl Opt ; 40(22): 3726-36, 2001 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-18360406

RESUMEN

This scattering of light by small particles embedded in a continuous transparent medium is influenced not only by the bulk optical properties of the particles and the medium but also by the size, shape, and spatial arrangement of the particles-that is, by the microstructure. If the particles are close together, as in agglomerated coatings or stereolithographic suspensions, interactions between the radiation fields of adjacent particles can lead to variations in the magnitude and spatial arrangement of the scattered light in the near and the far field, which can affect the color and hiding power of a coating, the cure depth and homogeneity in stereolithography, and the threshold intensity for stimulated emission in random lasers. Our calculations of the near- and the far-field scattering distribution for 200-nm TiO(2) spheres in pairs of various orientations and in an ordered array of five particles show that, depending on the orientation of the particles with respect to the incident light, these interactions can either increase or decrease the scattering efficiency, the isotropy of the scattering, and the magnitude of the electric field strength within the matrix and the particles. In the mid-visible range, two particles in line increase the backscattering fraction by 28% and the scattering strength by 38% over that of a single particle, whereas if the particles are in the diagonal configuration the backscattering fraction and scattering strength are actually reduced by addition of the second particle. At shorter or longer wavelengths the backscattering fraction is reduced regardless of the location of the second particle, by as much as 60% when five particles are arranged in the zigzag configuration. These results are surprising in that it is generally assumed that multiple scattering enhances backscattering. Simple models of multiple scattering or scattering of two particles as a single, larger particle are inadequate to explain these results.

5.
Nurs Times ; 65(6): 192, 1969 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-5765260
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA