Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Bioessays ; 45(8): e2200237, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37246937

RESUMEN

Meiotic recombination is one of the main sources of genetic variation, a fundamental factor in the evolutionary adaptation of sexual eukaryotes. Yet, the role of variation in recombination rate and other recombination features remains underexplored. In this review, we focus on the sensitivity of recombination rates to different extrinsic and intrinsic factors. We briefly present the empirical evidence for recombination plasticity in response to environmental perturbations and/or poor genetic background and discuss theoretical models developed to explain how such plasticity could have evolved and how it can affect important population characteristics. We highlight a gap between the evidence, which comes mostly from experiments with diploids, and theory, which typically assumes haploid selection. Finally, we formulate open questions whose solving would help to outline conditions favoring recombination plasticity. This will contribute to answering the long-standing question of why sexual recombination exists despite its costs, since plastic recombination may be evolutionary advantageous even in selection regimes rejecting any non-zero constant recombination.


Asunto(s)
Eucariontes , Recombinación Genética , Estudios Prospectivos , Meiosis/genética , Evolución Biológica , Selección Genética
2.
Pathogens ; 10(11)2021 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-34832684

RESUMEN

In the original article, there was a mistake published in Figure 3 [...].

3.
Pathogens ; 10(7)2021 07 16.
Artículo en Inglés | MEDLINE | ID: mdl-34358051

RESUMEN

Antagonistic interactions and co-evolution between a host and its parasite are known to cause oscillations in the population genetic structure of both species (Red Queen dynamics). Potentially, such oscillations may select for increased sex and recombination in the host, although theoretical models suggest that this happens under rather restricted values of selection intensity, epistasis, and other parameters. Here, we explore a model in which the diploid parasite succeeds to infect the diploid host only if their phenotypes at the interaction-mediating loci match. Whenever regular oscillations emerge in this system, we test whether plastic, pathogen-inducible recombination in the host can be favored over the optimal constant recombination. Two forms of the host recombination dependence on the parasite pressure were considered: either proportionally to the risk of infection (prevention strategy) or upon the fact of infection (remediation strategy). We show that both forms of plastic recombination can be favored, although relatively infrequently (up to 11% of all regimes with regular oscillations, and up to 20% of regimes with obligate parasitism). This happens under either strong overall selection and high recombination rate in the host, or weak overall selection and low recombination rate in the host. In the latter case, the system's dynamics are considerably more complex. The prevention strategy is favored more often than the remediation one. It is noteworthy that plastic recombination can be favored even when any constant recombination is rejected, making plasticity an evolutionary mechanism for the rescue of host recombination.

4.
Heredity (Edinb) ; 127(3): 278-287, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34163036

RESUMEN

Environmental seasonality is a potent evolutionary force, capable of maintaining polymorphism, promoting phenotypic plasticity and causing bet-hedging. In Drosophila, environmental seasonality has been reported to affect life-history traits, tolerance to abiotic stressors and immunity. Oscillations in frequencies of alleles underlying fitness-related traits were also documented alongside SNPs across the genome. Here, we test for seasonal changes in two recombination characteristics, crossover rate and crossover interference, in a natural D. melanogaster population from India using morphological markers of the three major chromosomes. We show that winter flies, collected after the dry season, have significantly higher desiccation tolerance than their autumn counterparts. This difference proved to hold also for hybrids with three independent marker stocks, suggesting its genetic rather than plastic nature. Significant between-season changes are documented for crossover rate (in 9 of 13 studied intervals) and crossover interference (in four of eight studied pairs of intervals); both single and double crossovers were usually more frequent in the winter cohort. The winter flies also display weaker plasticity of both recombination characteristics to desiccation. We ascribe the observed differences to indirect selection on recombination caused by directional selection on desiccation tolerance. Our findings suggest that changes in recombination characteristics can arise even after a short period of seasonal adaptation (~8-10 generations).


Asunto(s)
Drosophila melanogaster , Drosophila , Adaptación Fisiológica , Animales , Drosophila melanogaster/genética , Recombinación Genética , Estaciones del Año
5.
Ecol Evol ; 10(4): 2074-2084, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-32128139

RESUMEN

Recombination's omnipresence in nature is one of the most intriguing problems in evolutionary biology. The question of why recombination exhibits certain general features is no less interesting than that of why it exists at all. One such feature is recombination's fitness dependence (FD). The so far developed population genetics models have focused on the evolution of FD recombination mainly in haploids, although the empirical evidence for this phenomenon comes mostly from diploids. Using numerical analysis of modifier models for infinite panmictic populations, we show here that FD recombination can be evolutionarily advantageous in diploids subjected to purifying selection. We ascribe this advantage to the differential rate of disruption of lower- versus higher-fitness genotypes, which can be manifested in selected systems with at least three loci. We also show that if the modifier is linked to such selected system, it can additionally benefit from modifying this linkage in a fitness-dependent manner. The revealed evolutionary advantage of FD recombination appeared robust to crossover interference within the selected system, either positive or negative. Remarkably, FD recombination was often favored in situations where any constant nonzero recombination was evolutionarily disfavored, implying a relaxation of the rather strict constraints on major parameters (e.g., selection intensity and epistasis) required for the evolutionary advantage of nonzero recombination formulated by classical models.

6.
Genetica ; 147(3-4): 291-302, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-31240599

RESUMEN

Meiotic recombination is evolutionarily ambiguous, as being associated with both benefits and costs to its bearers, with the resultant dependent on a variety of conditions. While existing theoretical models explain the emergence and maintenance of recombination, some of its essential features remain underexplored. Here we focus on one such feature, recombination plasticity, and test whether recombination response to stress is fitness-dependent. We compare desiccation stress effects on recombination rate and crossover interference in chromosome 3 between desiccation-sensitive and desiccation-tolerant Drosophila lines. We show that relative to desiccation-tolerant genotypes, desiccation-sensitive genotypes exhibit a significant segment-specific increase in single- and double-crossover frequencies across the pericentromeric region of chromosome 3. Significant changes (relaxation) in crossover interference were found for the interval pairs flanking the centromere and extending to the left arm of the chromosome. These results indicate that desiccation is a recombinogenic factor and that desiccation-induced changes in both recombination rate and crossover interference are fitness-dependent, with a tendency of less fitted individuals to produce more variable progeny. Such dependence may play an important role in the regulation of genetic variation in populations experiencing environmental challenges.


Asunto(s)
Intercambio Genético , Drosophila melanogaster/genética , Adaptación Fisiológica/genética , Animales , Centrómero/genética , Desecación , Ontología de Genes , Aptitud Genética/fisiología , Variación Genética/fisiología
7.
Nat Commun ; 9(1): 3735, 2018 10 03.
Artículo en Inglés | MEDLINE | ID: mdl-30282993

RESUMEN

Yellow rust, caused by Puccinia striiformis f. sp. tritici (Pst), is a devastating fungal disease threatening much of global wheat production. Race-specific resistance (R)-genes are used to control rust diseases, but the rapid emergence of virulent Pst races has prompted the search for a more durable resistance. Here, we report the cloning of Yr15, a broad-spectrum R-gene derived from wild emmer wheat, which encodes a putative kinase-pseudokinase protein, designated as wheat tandem kinase 1, comprising a unique R-gene structure in wheat. The existence of a similar gene architecture in 92 putative proteins across the plant kingdom, including the barley RPG1 and a candidate for Ug8, suggests that they are members of a distinct family of plant proteins, termed here tandem kinase-pseudokinases (TKPs). The presence of kinase-pseudokinase structure in both plant TKPs and the animal Janus kinases sheds light on the molecular evolution of immune responses across these two kingdoms.


Asunto(s)
Basidiomycota/patogenicidad , Resistencia a la Enfermedad/genética , Genes de Plantas/fisiología , Enfermedades de las Plantas/inmunología , Proteínas de Plantas/genética , Triticum/fisiología , Animales , Mapeo Cromosómico , Evolución Molecular , Hordeum/genética , Quinasas Janus/genética , Mutagénesis , Enfermedades de las Plantas/microbiología , Plantas Modificadas Genéticamente , Dominios Proteicos/genética , Dominios Proteicos/fisiología , Triticum/microbiología
8.
Genome Biol ; 19(1): 112, 2018 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-30115128

RESUMEN

BACKGROUND: Numerous scaffold-level sequences for wheat are now being released and, in this context, we report on a strategy for improving the overall assembly to a level comparable to that of the human genome. RESULTS: Using chromosome 7A of wheat as a model, sequence-finished megabase-scale sections of this chromosome were established by combining a new independent assembly using a bacterial artificial chromosome (BAC)-based physical map, BAC pool paired-end sequencing, chromosome-arm-specific mate-pair sequencing and Bionano optical mapping with the International Wheat Genome Sequencing Consortium RefSeq v1.0 sequence and its underlying raw data. The combined assembly results in 18 super-scaffolds across the chromosome. The value of finished genome regions is demonstrated for two approximately 2.5 Mb regions associated with yield and the grain quality phenotype of fructan carbohydrate grain levels. In addition, the 50 Mb centromere region analysis incorporates cytological data highlighting the importance of non-sequence data in the assembly of this complex genome region. CONCLUSIONS: Sufficient genome sequence information is shown to now be available for the wheat community to produce sequence-finished releases of each chromosome of the reference genome. The high-level completion identified that an array of seven fructosyl transferase genes underpins grain quality and that yield attributes are affected by five F-box-only-protein-ubiquitin ligase domain and four root-specific lipid transfer domain genes. The completed sequence also includes the centromere.


Asunto(s)
Agricultura , Genoma de Planta , Fenómenos Ópticos , Mapeo Físico de Cromosoma/métodos , Triticum/genética , Centrómero/metabolismo , Cromosomas Artificiales Bacterianos/genética , Cromosomas de las Plantas/genética , Fructanos/análisis , Semillas/genética
9.
BMC Genomics ; 19(Suppl 3): 80, 2018 02 09.
Artículo en Inglés | MEDLINE | ID: mdl-29504906

RESUMEN

BACKGROUND: The IWGSC strategy for construction of the reference sequence of the bread wheat genome is based on first obtaining physical maps of the individual chromosomes. Our aim is to develop and use the physical map for analysis of the organization of the short arm of wheat chromosome 5B (5BS) which bears a number of agronomically important genes, including genes conferring resistance to fungal diseases. RESULTS: A physical map of the 5BS arm (290 Mbp) was constructed using restriction fingerprinting and LTC software for contig assembly of 43,776 BAC clones. The resulting physical map covered ~ 99% of the 5BS chromosome arm (111 scaffolds, N50 = 3.078 Mb). SSR, ISBP and zipper markers were employed for anchoring the BAC clones, and from these 722 novel markers were developed based on previously obtained data from partial sequencing of 5BS. The markers were mapped using a set of Chinese Spring (CS) deletion lines, and F2 and RICL populations from a cross of CS and CS-5B dicoccoides. Three approaches have been used for anchoring BAC contigs on the 5BS chromosome, including clone-by-clone screening of BACs, GenomeZipper analysis, and comparison of BAC-fingerprints with in silico fingerprinting of 5B pseudomolecules of T. dicoccoides. These approaches allowed us to reach a high level of BAC contig anchoring: 96% of 5BS BAC contigs were located on 5BS. An interesting pattern was revealed in the distribution of contigs along the chromosome. Short contigs (200-999 kb) containing markers for the regions interrupted by tandem repeats, were mainly localized to the 5BS subtelomeric block; whereas the distribution of larger 1000-3500 kb contigs along the chromosome better correlated with the distribution of the regions syntenic to rice, Brachypodium, and sorghum, as detected by the Zipper approach. CONCLUSION: The high fingerprinting quality, LTC software and large number of BAC clones selected by the informative markers in screening of the 43,776 clones allowed us to significantly increase the BAC scaffold length when compared with the published physical maps for other wheat chromosomes. The genetic and bioinformatics resources developed in this study provide new possibilities for exploring chromosome organization and for breeding applications.


Asunto(s)
Pan , Cromosomas de las Plantas/genética , Mapeo Físico de Cromosoma , Triticum/genética , Cromosomas Artificiales Bacterianos/genética , Reacción en Cadena de la Polimerasa
10.
Sci Rep ; 8(1): 4671, 2018 03 16.
Artículo en Inglés | MEDLINE | ID: mdl-29549310

RESUMEN

Animals living at high altitudes have evolved distinct phenotypic and genotypic adaptations against stressful environments. We studied the adaptive patterns of altitudinal stresses on transcriptome turnover in subterranean plateau zokors (Myospalax baileyi) in the high-altitude Qinghai-Tibetan Plateau. Transcriptomes of zokors from three populations with distinct altitudes and ecologies (Low: 2846 m, Middle: 3282 m, High: 3,714 m) were sequenced and compared. Phylogenetic and principal component analyses classified them into three divergent altitudinal population clusters. Genetic polymorphisms showed that the population at H, approaching the uppermost species boundary, harbors the highest genetic polymorphism. Moreover, 1056 highly up-regulated UniGenes were identified from M to H. Gene ontologies reveal genes like EPAS1 and COX1 were overexpressed under hypoxia conditions. EPAS1, EGLN1, and COX1 were convergent in high-altitude adaptation against stresses in other species. The fixation indices (F ST and G ST )-based outlier analysis identified 191 and 211 genes, highly differentiated among L, M, and H. We observed adaptive transcriptome changes in Myospalax baileyi, across a few hundred meters, near the uppermost species boundary, regardless of their relatively stable underground burrows' microclimate. The highly variant genes identified in Myospalax were involved in hypoxia tolerance, hypercapnia tolerance, ATP-pathway energetics, and temperature changes.


Asunto(s)
Adaptación Fisiológica , Perfilación de la Expresión Génica/métodos , Muridae/clasificación , Polimorfismo Genético , Altitud , Animales , Hipoxia de la Célula , Evolución Molecular , Regulación de la Expresión Génica , Muridae/genética , Muridae/fisiología , Filogenia , Análisis de Componente Principal , Análisis de Secuencia de ARN , Tibet
11.
Philos Trans R Soc Lond B Biol Sci ; 372(1736)2017 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-29109223

RESUMEN

While the evolutionary advantages of non-zero recombination rates have prompted diverse theoretical explanations, the evolution of essential recombination features remains underexplored. We focused on one such feature, the condition dependence of recombination, viewed as the variation in within-generation sensitivity of recombination to external (environment) and/or internal (genotype) conditions. Limited empirical evidence for its existence comes mainly from diploids, whereas theoretical models show that it only easily evolves in haploids. The evolution of condition-dependent recombination can be explained by its advantage for the selected system (indirect effect), or by benefits to modifier alleles, ensuring this strategy regardless of effects on the selected system (direct effect). We considered infinite panmictic populations of diploids exposed to a cyclical two-state environment. Each organism had three selected loci. Examining allele dynamics at a fourth, selectively neutral recombination modifier locus, we frequently observed that a modifier allele conferring condition-dependent recombination between the selected loci displaced the allele conferring the optimal constant recombination rate. Our simulations also confirm the results of theoretical studies showing that condition-dependent recombination cannot evolve in diploids on the basis of direct fitness-dependent effects alone. Therefore, the evolution of condition-dependent recombination in diploids can be driven by indirect effects alone, i.e. by modifier effects on the selected system.This article is part of the themed issue 'Evolutionary causes and consequences of recombination rate variation in sexual organisms'.


Asunto(s)
Diploidia , Recombinación Genética/genética , Selección Genética , Alelos , Modelos Genéticos
12.
Plant Genome ; 10(2)2017 07.
Artículo en Inglés | MEDLINE | ID: mdl-28724077

RESUMEN

Bread wheat ( L.) is one of the most important crops worldwide. Although a reference genome sequence would represent a valuable resource for wheat improvement through genomics-assisted breeding and gene cloning, its generation has long been hampered by its allohexaploidy, high repeat content, and large size. As a part of a project coordinated by the International Wheat Genome Sequencing Consortium (IWGSC), a physical map of the short arm of wheat chromosome 3D (3DS) was prepared to facilitate reference genome assembly and positional gene cloning. It comprises 869 contigs with a cumulative length of 274.5 Mbp and represents 85.5% of the estimated chromosome arm size. Eighty-six Mbp of survey sequences from chromosome arm 3DS were assigned in silico to physical map contigs via next-generation sequencing of bacterial artificial chromosome pools, thus providing a high-density framework for physical map ordering along the chromosome arm. About 60% of the physical map was anchored in this single experiment. Finally, 1393 high-confidence genes were anchored to the physical map. Comparisons of gene space of the chromosome arm 3DS with genomes of closely related species [ (L.) P.Beauv., rice ( L.), and sorghum [ (L.) Moench] and homeologous wheat chromosomes provided information about gene movement on the chromosome arm.


Asunto(s)
Cromosomas de las Plantas , Triticum/genética , Mapeo Cromosómico , Cromosomas Artificiales Bacterianos , Clonación Molecular , Polimorfismo de Nucleótido Simple , Poliploidía
13.
Mol Phylogenet Evol ; 107: 209-220, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-27818264

RESUMEN

With the availability of enormous quantities of genetic data it has become common to construct very accurate trees describing the evolutionary history of the species under study, as well as every single gene of these species. These trees allow us to examine the evolutionary compliance of given markers (characters). A marker compliant with the history of the species investigated, has undergone mutations along the species tree branches, such that every subtree of that tree exhibits a different state. Convex recoloring (CR) uses combinatorial representation to measure the adequacy of a taxonomic classifier to a given tree. Despite its biological origins, research on CR has been almost exclusively dedicated to mathematical properties of the problem, or variants of it with little, if any, relationship to taxonomy. In this work we return to the origins of CR. We put CR in a statistical framework and introduce and learn the notion of the statistical significance of a character. We apply this measure to two data sets - Passerine birds and prokaryotes, and four examples. These examples demonstrate various applications of CR, from evolutionary relatedness, through lateral evolution, to supertree construction. The above study was done with a new software that we provide, containing algorithmic improvement with a graphical output of a (optimally) recolored tree. AVAILABILITY: A code implementing the features and a README is available at http://research.haifa.ac.il/ssagi/software/convexrecoloring.zip.


Asunto(s)
Algoritmos , Evolución Biológica , Migración Animal , Animales , Aves/genética , Simulación por Computador , Marcadores Genéticos , Muda , Filogenia , Células Procariotas/metabolismo
14.
Sci Adv ; 2(10): e1600822, 2016 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-27819043

RESUMEN

Necrotrophic pathogens live and feed on dying tissue, but their interactions with plants are not well understood compared to biotrophic pathogens. The wheat Snn1 gene confers susceptibility to strains of the necrotrophic pathogen Parastagonospora nodorum that produce the SnTox1 protein. We report the positional cloning of Snn1, a member of the wall-associated kinase class of receptors, which are known to drive pathways for biotrophic pathogen resistance. Recognition of SnTox1 by Snn1 activates programmed cell death, which allows this necrotroph to gain nutrients and sporulate. These results demonstrate that necrotrophic pathogens such as P. nodorum hijack host molecular pathways that are typically involved in resistance to biotrophic pathogens, revealing the complex nature of susceptibility and resistance in necrotrophic and biotrophic pathogen interactions with plants.


Asunto(s)
Ascomicetos/metabolismo , Proteínas Fúngicas/metabolismo , Quinasas de Receptores Acoplados a Proteína-G/metabolismo , Enfermedades de las Plantas/microbiología , Proteínas de Plantas/metabolismo , Transducción de Señal , Triticum , Ascomicetos/genética , Ascomicetos/patogenicidad , Proteínas Fúngicas/genética , Triticum/enzimología , Triticum/microbiología
15.
BMC Evol Biol ; 16: 177, 2016 09 02.
Artículo en Inglés | MEDLINE | ID: mdl-27590526

RESUMEN

BACKGROUND: The subterranean blind mole rat, Spalax (genus Nannospalax) endures extreme hypoxic conditions and fluctuations in oxygen levels that threaten DNA integrity. Nevertheless, Spalax is long-lived, does not develop spontaneous cancer, and exhibits an outstanding resistance to carcinogenesis in vivo, as well as anti-cancer capabilities in vitro. We hypothesized that adaptations to similar extreme environmental conditions involve common mechanisms for overcoming stress-induced DNA damage. Therefore, we aimed to identify shared features among species that are adapted to hypoxic stress in the sequence of the tumor-suppressor protein p53, a master regulator of the DNA-damage response (DDR). RESULTS: We found that the sequences of p53 transactivation subdomain 2 (TAD2) and tetramerization and regulatory domains (TD and RD) are more similar among hypoxia-tolerant species than expected from phylogeny. Specific positions in these domains composed patterns that are more frequent in hypoxia-tolerant species and have proven to be good predictors of species' classification into stress-related categories. Some of these positions, which are known to be involved in the interactions between p53 and critical DDR proteins, were identified as positively selected. By 3D modeling of p53 interactions with the coactivator p300 and the DNA repair protein RPA70, we demonstrated that, compared to humans, these substitutions potentially reduce the binding of these proteins to Spalax p53. CONCLUSIONS: We conclude that extreme hypoxic conditions may have led to convergent evolutionary adaptations of the DDR via TAD2 and TD/RD domains of p53.


Asunto(s)
Evolución Biológica , Reparación del ADN , Spalax/genética , Proteína p53 Supresora de Tumor/genética , Adaptación Fisiológica , Secuencia de Aminoácidos , Animales , Hipoxia/veterinaria , Modelos Moleculares , Neoplasias/genética , Neoplasias/veterinaria , Oxígeno/metabolismo , Alineación de Secuencia , Spalax/metabolismo , Proteína p53 Supresora de Tumor/química , Proteína p53 Supresora de Tumor/metabolismo
16.
Proc Natl Acad Sci U S A ; 113(27): 7584-9, 2016 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-27339131

RESUMEN

Incipient sympatric speciation in blind mole rat, Spalax galili, in Israel, caused by sharp ecological divergence of abutting chalk-basalt ecologies, has been proposed previously based on mitochondrial and whole-genome nuclear DNA. Here, we present new evidence, including transcriptome, DNA editing, microRNA, and codon usage, substantiating earlier evidence for adaptive divergence in the abutting chalk and basalt populations. Genetic divergence, based on the previous and new evidence, is ongoing despite restricted gene flow between the two populations. The principal component analysis, neighbor-joining tree, and genetic structure analysis of the transcriptome clearly show the clustered divergent two mole rat populations. Gene-expression level analysis indicates that the population transcriptome divergence is displayed not only by soil divergence but also by sex. Gene ontology enrichment of the differentially expressed genes from the two abutting soil populations highlights reproductive isolation. Alternative splicing variation of the two abutting soil populations displays two distinct splicing patterns. L-shaped FST distribution indicates that the two populations have undergone divergence with gene flow. Transcriptome divergent genes highlight neurogenetics and nutrition characterizing the chalk population, and energetics, metabolism, musculature, and sensory perception characterizing the abutting basalt population. Remarkably, microRNAs also display divergence between the two populations. The GC content is significantly higher in chalk than in basalt, and stress-response genes mostly prefer nonoptimal codons. The multiple lines of evidence of ecological-genomic and genetic divergence highlight that natural selection overrules the gene flow between the two abutting populations, substantiating the sharp ecological chalk-basalt divergence driving sympatric speciation.


Asunto(s)
Especiación Genética , MicroARNs/metabolismo , Spalax/genética , Simpatría , Transcriptoma , Animales , Carbonato de Calcio , Ecosistema , Femenino , Flujo Génico , Masculino , Silicatos , Suelo , Spalax/metabolismo
17.
BMC Plant Biol ; 16 Suppl 1: 8, 2016 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-26821813

RESUMEN

BACKGROUND: Variability of heading date may assist in wheat adaptation to local environments. Thereafter, discovery of new heading date determinants is important for cereal improvement. In this study we used common wheat cultivar Chinese Spring (CS) and the substitution line of CS with 5B chromosome from T. dicoccoides (CS-5Bdic), different in their heading date by two weeks, to detect determinants of heading date on 5B chromosome. RESULTS: The possible influence of the VRN-B1 gene, the most powerful regulator of flowering, located on 5B chromosome, to differences in heading time between CS and CS-5Bdic was studied. The sequencing of this gene from CS-5Bdic showed that an insertion of a nucleotide triplet produced an additional amino acid in the corresponding protein. No changes in the transcription levels of each homoeologous VRN-1 loci were found in CS-5Bdic by comparison with CS. To ascertain the loci determining heading date difference, a set of 116 recombinant inbred 5В chromosomal lines as a result of hybridization of CS with CS-5Bdic were developed and their heading dates were estimated. Using the Illumina Infinium 15 k Wheat platform, 379 5B-specific polymorphic markers were detected and a genetic map with 82 skeletal markers was constructed. Phenotype (heading date) - genotype association analysis revealed seventy eight markers in pericentromeric region of 5B chromosome significantly associated with heading date variation. Based on this estimation and synteny with model crop genomes we identified the three best candidate genes: WRKY, ERF/AP2 and FHY3/FAR1. CONCLUSIONS: We supposed that the difference in activity of WRKY, ERF/AP2 and/or FHY3/FAR1 transcription factors between CS and CS-5Bdic to be a probable reason for the observed difference in heading dates. Data obtained in this study provide a good basis for the subsequent investigation of heading time pathways in wheat.


Asunto(s)
Cromosomas de las Plantas , Triticum/genética , Adaptación Fisiológica , Mapeo Cromosómico , ADN de Plantas , Genes de Plantas , Ligamiento Genético , Polimorfismo de Nucleótido Simple , Sitios de Carácter Cuantitativo , Análisis de Secuencia de ADN , Transcripción Genética , Triticum/crecimiento & desarrollo
18.
Front Plant Sci ; 7: 2063, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-28119729

RESUMEN

Bread wheat has a large and complex allohexaploid genome with low recombination level at chromosome centromeric and peri-centromeric regions. This significantly hampers ordering of markers, contigs of physical maps and sequence scaffolds and impedes obtaining of high-quality reference genome sequence. Here we report on the construction of high-density and high-resolution radiation hybrid (RH) map of chromosome 4A supported by high-density chromosome deletion map. A total of 119 endosperm-based RH lines of two RH panels and 15 chromosome deletion bin lines were genotyped with 90K iSelect single nucleotide polymorphism (SNP) array. A total of 2316 and 2695 markers were successfully mapped to the 4A RH and deletion maps, respectively. The chromosome deletion map was ordered in 19 bins and allowed precise identification of centromeric region and verification of the RH panel reliability. The 4A-specific RH map comprises 1080 mapping bins and spans 6550.9 cR with a resolution of 0.13 Mb/cR. Significantly higher mapping resolution in the centromeric region was observed as compared to recombination maps. Relatively even distribution of deletion frequency along the chromosome in the RH panel was observed and putative functional centromere was delimited within a region characterized by two SNP markers.

19.
Plant Cell ; 27(10): 2991-3012, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26452600

RESUMEN

In cereals, several mildew resistance genes occur as large allelic series; for example, in wheat (Triticum aestivum and Triticum turgidum), 17 functional Pm3 alleles confer agronomically important race-specific resistance to powdery mildew (Blumeria graminis). The molecular basis of race specificity has been characterized in wheat, but little is known about the corresponding avirulence genes in powdery mildew. Here, we dissected the genetics of avirulence for six Pm3 alleles and found that three major Avr loci affect avirulence, with a common locus_1 involved in all AvrPm3-Pm3 interactions. We cloned the effector gene AvrPm3(a2/f2) from locus_2, which is recognized by the Pm3a and Pm3f alleles. Induction of a Pm3 allele-dependent hypersensitive response in transient assays in Nicotiana benthamiana and in wheat demonstrated specificity. Gene expression analysis of Bcg1 (encoded by locus_1) and AvrPm3 (a2/f2) revealed significant differences between isolates, indicating that in addition to protein polymorphisms, expression levels play a role in avirulence. We propose a model for race specificity involving three components: an allele-specific avirulence effector, a resistance gene allele, and a pathogen-encoded suppressor of avirulence. Thus, whereas a genetically simple allelic series controls specificity in the plant host, recognition on the pathogen side is more complex, allowing flexible evolutionary responses and adaptation to resistance genes.


Asunto(s)
Ascomicetos/patogenicidad , Resistencia a la Enfermedad/genética , Enfermedades de las Plantas/inmunología , Triticum/genética , Alelos , Secuencia de Aminoácidos , Cruzamientos Genéticos , Evolución Molecular , Expresión Génica , Modelos Genéticos , Anotación de Secuencia Molecular , Enfermedades de las Plantas/microbiología , Hojas de la Planta/genética , Hojas de la Planta/inmunología , Hojas de la Planta/microbiología , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Polimorfismo Genético , Alineación de Secuencia , Análisis de Secuencia de ADN , Especificidad de la Especie , Nicotiana/genética , Nicotiana/inmunología , Nicotiana/microbiología , Triticum/inmunología , Triticum/microbiología , Virulencia
20.
Plant Genome ; 8(3): eplantgenome2015.03.0011, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-33228274

RESUMEN

The huge size, redundancy, and highly repetitive nature of the bread wheat [Triticum aestivum (L.)] genome, makes it among the most difficult species to be sequenced. To overcome these limitations, a strategy based on the separation of individual chromosomes or chromosome arms and the subsequent production of physical maps was established within the frame of the International Wheat Genome Sequence Consortium (IWGSC). A total of 95,812 bacterial artificial chromosome (BAC) clones of short-arm chromosome 5A (5AS) and long-arm chromosome 5A (5AL) arm-specific BAC libraries were fingerprinted and assembled into contigs by complementary analytical approaches based on the FingerPrinted Contig (FPC) and Linear Topological Contig (LTC) tools. Combined anchoring approaches based on polymerase chain reaction (PCR) marker screening, microarray, and sequence homology searches applied to several genomic tools (i.e., genetic maps, deletion bin map, neighbor maps, BAC end sequences (BESs), genome zipper, and chromosome survey sequences) allowed the development of a high-quality physical map with an anchored physical coverage of 75% for 5AS and 53% for 5AL with high portions (64 and 48%, respectively) of contigs ordered along the chromosome. In the genome of grasses, Brachypodium [Brachypodium distachyon (L.) Beauv.], rice (Oryza sativa L.), and sorghum [Sorghum bicolor (L.) Moench] homologs of genes on wheat chromosome 5A were separated into syntenic blocks on different chromosomes as a result of translocations and inversions during evolution. The physical map presented represents an essential resource for fine genetic mapping and map-based cloning of agronomically relevant traits and a reference for the 5A sequencing projects.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...