Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Therm Biol ; 114: 103522, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37344019

RESUMEN

Physical exercise differentially increases body temperature according to the time of day, which shows the importance of circadian rhythm in thermal regulation. Given its contribution in central pathways involved in thermoregulation, orexin A could play a role in the regulation of core body temperature during and after exercise. To test this hypothesis, we assessed the effect of exercise, performed at two times of day, on core temperature and on the amount of orexin A in the production zone, i.e., the dorsal hypothalamus. Forty-nine male Wistar rats underwent forced treadmill exercise during the HG phase and HL phase of core temperature. Basal core temperature was recorded continuously for 48 h by implanted telemetric sensors in 11 rats. Regulation of core temperature during exercise (20 min) and after each exercise (60 min) was modeled with a modified logistic-type function. During HG exercise, core temperature curve reached a significantly higher maximum (asymptote: +0.70 ± 0.10 °C) and took longer to attain the strongest inclination of the core temperature regulation curve (Xmid: 3.46 ± 0.72 min). After HG exercise, time of recovery was significantly longer than after HL exercise. In male rats, thermoregulatory response to acute physical exercise was influenced by the time of day. There was no effect of either physical activity or time of day on the level of orexin A in the dorsal hypothalamus. Our results suggest that orexin A in the dorsal hypothalamus is not involved in the effects of physical exercise on thermoregulation.


Asunto(s)
Regulación de la Temperatura Corporal , Temperatura Corporal , Animales , Masculino , Ratas , Temperatura Corporal/fisiología , Regulación de la Temperatura Corporal/fisiología , Hipotálamo/metabolismo , Orexinas/metabolismo , Ratas Wistar
2.
Biochim Biophys Acta Proteins Proteom ; 1869(1): 140542, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-32950692

RESUMEN

Among aging-induced impairments, those affecting cognitive functions certainly represent one the most major challenge to face to improve elderly quality of life. In last decades, our knowledge on changes in the morphology and function of neuronal networks associated with normal and pathological brain aging has rapidly progressed, initiating the development of different pharmacological and behavioural strategies to alleviate cognitive aging. In particular, experimental evidences have accumulated indicating that the communication between neurons and its plasticity gradually weakens with aging. Because of its pivotal role for brain functional plasticity, the N-Methyl­d-Aspartate receptor subtype of glutamate receptors (NMDAr) has gathered much of the experimental interest. NMDAr activation is regulated by many mechanisms. Among is the mandatory binding of a co-agonist, such as the amino acid d-serine, in order to activate NMDAr. This mini-review presents the most recent information indicating how d-serine could contribute to mechanisms of physiological cognitive aging and also considers the divergent views relative of the role of the NMDAr co-agonist in Alzheimer's disease.


Asunto(s)
Envejecimiento/metabolismo , Enfermedad de Alzheimer/metabolismo , Plasticidad Neuronal/fisiología , Receptores de N-Metil-D-Aspartato/metabolismo , Serina/metabolismo , Envejecimiento/patología , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/patología , Animales , Astrocitos/metabolismo , Astrocitos/patología , Cognición/fisiología , Expresión Génica , Glucosa/metabolismo , Ácido Glutámico/metabolismo , Hipocampo/metabolismo , Hipocampo/patología , Humanos , Memoria/fisiología , Neuronas/metabolismo , Neuronas/patología , Racemasas y Epimerasas/genética , Racemasas y Epimerasas/metabolismo , Receptores de N-Metil-D-Aspartato/genética
3.
Int J Pharm ; 587: 119655, 2020 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-32712252

RESUMEN

BACKGROUND: Pyridoclax is an original lead, recently identified as very promising in treatment of chemoresistant ovarian cancers. To correct the unfavorable intrinsic physico-chemical properties of this BCS II drug, a formulation strategy was implied in the drug discovery step. Pyridoclax-loaded nanoemulsions (NEs) were developed to permit its preclinical evaluation. RESULTS: The resulting nanoemulsions displayed a mean size of about 100 nm and a high encapsulation efficiency (>95%) at a drug loading of 2 wt%, enabling a 1,000-fold increase of the Pyridoclax apparent solubility. NEs have enabled a sustained release of the drug as assayed by a dialysis bag method. In addition, anti-tumor effects of the Pyridoclax-loaded nanoemulsions (PNEs) showed a 2.5-fold higher activity on chemoresistant ovarian cancer cells than free Pyridoclax. This effect was confirmed by a drastic increase of caspase 3/7 activation from 10 µM PNEs, as newly objectified by real time apoptose imaging. The Pyridoclax bioavailability was kept unchanged after encapsulation in nanoemulsions as determined in a mice model after oral administration. CONCLUSION: Thus, NEs should permit valuable Pyridoclax oral administration, and valorization of this promising anticancer drug by maintaining its original anticancer activity, and by reducing the Pyridoclax therapeutic concentration.


Asunto(s)
Nanopartículas , Neoplasias Ováricas , Animales , Emulsiones , Femenino , Humanos , Ratones , Neoplasias Ováricas/tratamiento farmacológico , Piridinas , Solubilidad
4.
Synapse ; 71(12)2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-28752923

RESUMEN

Gambling disorder is associated to an increased impulsivity, a high level of novelty-seeking and a dysregulation of the forebrain neurotransmission systems. However, the neurobiological mechanisms of this addictive disorder are not fully understood and no valid pharmacological approach has yet been approved. The present study aimed to investigate the effect of 5-HT7 receptor (5-HT7 R) stimulation with a brain penetrant and selective agonist, LP-211 (0.25 and 0.50 mg kg-1 i.p.) during post-experience consolidation, (i) acutely in a novelty-preference test (Exp. 1) or (ii) sub-chronically in the Probabilistic-Delivery Task (rPDT, commonly used to measure individual differences in risk proneness of rats; Exp. 2). Results of Exp. 1 showed that 5-HT7 R activation improves consolidation of chamber-shape memory in the novelty-preference test, leading to significant novelty-induced hyperactivity and recognition, in conditions where controls displayed a null-preference. These results suggest that 5-HT7 Rs may be involved in the consolidation of information inherent to spatial environments, facilitating the recognition of novelty. Furthermore, in the operant rPDT (Exp. 2), 5-HT7 R activation shifts the choice towards a larger yet unlikely reward and turns the propensity of rats towards risk-prone behavior. Thus, 5-HT7 Rs stimulation apparently strengthens the consideration of future, bigger rewards, also enhancing the seeking of it by operant pokes. These effects may well be explained by LP-211 actions on hippocampal versus prefrontal cortex-mediated regulations, leading to improved (though suboptimal) strategy formation. However, further experiments are necessary to determine more in depth the serotonergic pathways involved.


Asunto(s)
Memoria/efectos de los fármacos , Piperazinas/farmacología , Psicotrópicos/farmacología , Recompensa , Asunción de Riesgos , Agonistas de Receptores de Serotonina/farmacología , Análisis de Varianza , Animales , Condicionamiento Operante/efectos de los fármacos , Condicionamiento Operante/fisiología , Masculino , Memoria/fisiología , Actividad Motora/efectos de los fármacos , Actividad Motora/fisiología , Pruebas Neuropsicológicas , Distribución Aleatoria , Ratas Wistar , Receptores de Serotonina/metabolismo , Percepción Espacial/efectos de los fármacos , Percepción Espacial/fisiología
5.
Neuroscience ; 309: 243-58, 2015 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-25934041

RESUMEN

Methylphenidate (MPH) is a widely prescribed stimulant drug for the treatment of attention deficit hyperactivity disorder (ADHD) in children and adolescents. Its use in this age group raises concerns regarding the potential interference with ongoing neurodevelopmental processes. Particularly the hippocampus is a highly plastic brain region that continues to develop postnatally and is involved in cognition and emotional behavior, functions known to be affected by MPH. In this study, we assessed whether hippocampal structure and function were affected by chronic oral MPH treatment and whether its effects were different in adolescent or adult rats. Using behavioral testing, resting-state functional MRI, post-mortem structural magnetic resonance imaging (MRI), and immunohistochemistry, we assessed MPH's effects on recognition memory, depressive-like behavior, topological features of functional connectivity networks, hippocampal shape and markers for hippocampal neurogenesis and proliferation. Object recognition memory was transiently impaired in adolescent treated rats, while in animals treated during adulthood, increased depressive-like behavior was observed. Neurogenesis was increased in adolescent treated rats, whereas cell proliferation was decreased following adult treatment. Adolescent treated rats showed inward shape deformations adjacent to ventral parahippocampal regions known to be involved in recognition memory, whereas such deformations were not observed in adult treated animals. Irrespective of the age of treatment, MPH affected topological features of ventral hippocampal functional networks. Thus, chronic oral treatment with a therapeutically relevant dose of MPH preferentially affected the ventral part of the hippocampus and induced contrasting effects in adolescent and adult rats. The differences in behavior were paralleled by opposite effects on adult neurogenesis and granule cell proliferation.


Asunto(s)
Estimulantes del Sistema Nervioso Central/toxicidad , Hipocampo/efectos de los fármacos , Hipocampo/patología , Metilfenidato/toxicidad , Neurogénesis/efectos de los fármacos , Administración Oral , Envejecimiento/efectos de los fármacos , Envejecimiento/patología , Envejecimiento/fisiología , Envejecimiento/psicología , Animales , Trastorno por Déficit de Atención con Hiperactividad/tratamiento farmacológico , Trastorno Depresivo/inducido químicamente , Trastorno Depresivo/patología , Trastorno Depresivo/fisiopatología , Hipocampo/crecimiento & desarrollo , Hipocampo/fisiología , Inmunohistoquímica , Imagen por Resonancia Magnética , Masculino , Vías Nerviosas/efectos de los fármacos , Vías Nerviosas/crecimiento & desarrollo , Vías Nerviosas/patología , Vías Nerviosas/fisiopatología , Neurogénesis/fisiología , Ratas Wistar , Reconocimiento en Psicología/efectos de los fármacos , Reconocimiento en Psicología/fisiología , Descanso
6.
Neurosci Lett ; 522(1): 57-61, 2012 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-22705908

RESUMEN

Vestibular deafferentation induces strong spatial memory impairments in rodents and dorsal hippocampal atrophy in humans, suggesting that vestibular information plays an important role in spatial-memory processes. However, previous studies have not discriminated between the role of the semi-circular canals, gravisensors and cochlear sense organ in such impairments due to complete damage of the vestibular and cochlear organs in their models of lesions. This is the first time that mutant mice (het/het) devoid of otoconia (lack of vestibular gravisensors) have been evaluated in behavioral tests. Results show different levels of achievement in the tests. The rotarod and elevated plus-maze were not executable, the rotarod being a safer test for differentiating the het/het mouse phenotype compared to the more anxiogenic swimming pool. Y-maze and place recognition tests were achieved, but chance values were not reached in the het/het group. Additionally, het/het mice presented uncommon behavior when faced with objects during the object recognition test. Impairments in het/het mice in the Y-maze test suggest a crucial role of the vestibular gravisensors in spatial-memory processes.


Asunto(s)
Memoria , Membrana Otolítica/fisiología , Percepción Espacial , Animales , Masculino , Aprendizaje por Laberinto , Ratones , Ratones Mutantes , Membrana Otolítica/anomalías , Reconocimiento en Psicología , Prueba de Desempeño de Rotación con Aceleración Constante
7.
Neuroscience ; 218: 161-9, 2012 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-22633950

RESUMEN

It is now well established that vestibular information plays an important role in spatial memory processes. Although vestibular lesions induce anxiety in humans, this finding remains controversial in rodents. However, it is possible that anxiety-related behavior is associated with spatial memory impairments after vestibular lesions. We aimed to evaluate anxiety-like behavior and the effect of an anxiolytic treatment during a complex spatial memory task in a rat model of compensated bilateral vestibular lesions. Adult rats were divided into four groups, with or without vestibular lesions and, treated or untreated by diazepam. The vestibular lesion was performed by transtympanic injection of arsanilate and compared to transtympanic saline injection. Diazepam or saline was administered 1h before each test or learning session. Vestibular-lesioned rats exhibited anxiety-like behavior which was decreased with diazepam. Spatial memory performance was similar in control-treated and untreated groups, suggesting no effect on memory at the dose of diazepam used. Spatial memory performances were not modified by anxiolytic drug treatment in vestibular-lesioned rats compared to vestibular-lesioned rats without drug treatment. We conclude that bilateral vestibular lesions in rats induced anxiety-like behavior which was unrelated to spatial memory impairment and was probably specifically related to the loss of vestibular information.


Asunto(s)
Ansiedad/etiología , Memoria/fisiología , Conducta Espacial/fisiología , Enfermedades Vestibulares/complicaciones , Animales , Modelos Animales de Enfermedad , Masculino , Ratas , Ratas Sprague-Dawley , Vestíbulo del Laberinto/lesiones
8.
Hippocampus ; 22(4): 814-26, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-21538662

RESUMEN

It has recently been shown that a lack of vestibular sensory information decreases spatial memory performance and induces biochemical changes in the hippocampus in rodents. After vestibular neurectomy, patients display spatial memory deficit and hippocampal atrophy. Our objectives were to explore: (a) spatial (Y maze, radial-arm maze), and non-spatial (object recognition) memory performance, (b) modulation of NMDA receptors within the hippocampus using radioligand binding, and (c) hippocampal atrophy, using MRI, in a rat model of bilateral labyrinthectomy realized in two operations. Chemical vestibular lesions (VLs) were induced in 24 animals by transtympanic injections of sodium arsanilate (30 mg/0.1 ml/ear), one side being lesioned 3 weeks after the other. The control group received transtympanic saline solution (0.1 ml/ear) (n = 24). Spatial memory performance (Y maze and radial maze) decreased after VL. Conversely, non-spatial memory performance (object recognition) was not affected by VL. No hippocampal atrophy was observed with MRI, but density of NMDA receptors were increased in the hippocampus after VL. These findings show that the lack of vestibular information induced specific deficits in spatial memory. Additionally, quantitative autoradiographic data suggest the involvement of the glutamatergic system in spatial memory processes related to vestibular information. When studying spatial memory performances in the presence of vestibular syndrome, two-step labyrinthectomy is a suitable procedure for distinguishing between the roles of the specific components of vestibular input loss and those of impaired locomotor activity.


Asunto(s)
Hipocampo/fisiología , Memoria/fisiología , Receptores de N-Metil-D-Aspartato/fisiología , Vestíbulo del Laberinto/inervación , Animales , Atrofia , Desnervación , Hipocampo/patología , Hipocampo/fisiopatología , Imagen por Resonancia Magnética , Masculino , Aprendizaje por Laberinto/fisiología , Ratas , Ratas Sprague-Dawley , Síndrome , Vestíbulo del Laberinto/fisiopatología
9.
Neurobiol Aging ; 33(5): 1005.e1-10, 2012 May.
Artículo en Inglés | MEDLINE | ID: mdl-22035592

RESUMEN

The rescue of cognitive function through environmental enrichment (EE) during aging has been extensively documented. However, the age at onset, the duration of EE, and the cerebral mechanisms required to obtain the greatest benefits still remain to be determined. We have recently shown that EE applied for 3 mo after the median lifespan, i.e., the age at which 50% of the population is still alive (from 17 to 20 mo in NMRI mice), failed to prevent cognitive deficits in senescent animals. In the present study, mice were exposed to EE prior to the median lifespan, and for a longer total duration (from 14 to 20 mo), before the assessment of memory performance and the electrophysiological properties of hippocampal neuronal networks. The EE prevented memory deficits and reduced anxiety as the animal aged. Moreover, EE attenuated the age-related impairment of basal glutamatergic neurotransmission in CA1 hippocampal slices, and reversed the decrease in isolated N-methyl-D-Aspartate receptor (NMDA-R)-dependent synaptic potentials. Surprisingly, EE did not prevent the age-related alteration of theta-burst-induced long-term potentiation (LTP). This study therefore suggests that EE needs to be initiated before the age corresponding to the median lifespan and/or required long duration (> 3 mo) to have an effect on cognitive aging. In addition, we show that EE probably acts through theta-burst-independent mechanisms of synaptic plasticity.


Asunto(s)
Envejecimiento/fisiología , Cognición/fisiología , Ambiente Controlado , Exposición a Riesgos Ambientales , Hipocampo/fisiología , Longevidad/fisiología , Envejecimiento/psicología , Animales , Ansiedad/prevención & control , Femenino , Trastornos de la Memoria/prevención & control , Ratones , Ratones Endogámicos , Plasticidad Neuronal/fisiología , Técnicas de Cultivo de Órganos , Sinapsis/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA