Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Methods Mol Biol ; 2798: 141-151, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38587740

RESUMEN

Carotenoids and tocopherols are among the most powerful lipophilic antioxidants accumulated in fruit and vegetable crops. This chapter describes a method for the separation and quantification of carotenoids/chlorophylls and tocopherols based on microextraction followed by reverse- and normal-phase HPLC, respectively. Using this method, high-throughput, accurate analysis of these compounds can be performed in leaf and fruit samples.


Asunto(s)
Carotenoides , Tocoferoles , Frutas , Vitamina E , Antioxidantes
2.
J Exp Bot ; 2024 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-38492237

RESUMEN

During the last decade, the knowledge about BBX proteins has abruptly increased. Genome-wide studies identified BBX gene family in several ornamental, industry and food crops; however, the reports regarding the role of these genes as regulators of agronomically important traits are scarce. Here, by phenotyping a knockout mutant, we performed a comprehensive functional characterization of the tomato locus Solyc12g089240, hereafter called SlBBX20. The data revealed the encoded protein as a positive regulator of light signaling affecting several physiological processes during plant lifespan. By the inhibition of PHYTOCHROME INTERACTING FACTOR 4 (SlPIF4)-auxin crosstalk, SlBBX20 regulates photomorphogenesis. Later, it controls the balance between cell division and expansion to guarantee the correct vegetative and reproductive development. In fruits, SlBBX20 is transcriptionally induced by the master transcription factor RIPENING INHIBITOR (SlRIN) and, together with ELONGATED HYPOCOTYL 5 (SlHY5), upregulates flavonoids biosynthetic genes. Finally, SlBBX20 promotes the accumulation of steroidal glycoalkaloids and attenuates Botrytis cinerea infection. This work clearly demonstrates that BBX proteins are multilayer regulators of plant physiology, not only because they affect multiple processes along plant development but also regulate other genes at the transcriptional and post-translational levels.

3.
J Exp Bot ; 74(17): 5124-5139, 2023 09 13.
Artículo en Inglés | MEDLINE | ID: mdl-37347477

RESUMEN

The miRNA156 (miR156)/SQUAMOSA PROMOTER-BINDING PROTEIN-LIKE (SPL/SBP) regulatory hub is highly conserved among phylogenetically distinct species, but how it interconnects multiple pathways to converge to common integrators controlling shoot architecture is still unclear. Here, we demonstrated that the miR156/SlSBP15 node modulates tomato shoot branching by connecting multiple phytohormones with classical genetic pathways regulating both axillary bud development and outgrowth. miR156-overexpressing plants (156-OE) displayed high shoot branching, whereas plants overexpressing a miR156-resistant SlSBP15 allele (rSBP15) showed arrested shoot branching. Importantly, the rSBP15 allele was able to partially restore the wild-type shoot branching phenotype in the 156-OE background. rSBP15 plants have tiny axillary buds, and their activation is dependent on shoot apex-derived auxin transport inhibition. Hormonal measurements revealed that indole-3-acetic acid (IAA) and abscisic acid (ABA) concentrations were lower in 156-OE and higher in rSBP15 axillary buds, respectively. Genetic and molecular data indicated that SlSBP15 regulates axillary bud development and outgrowth by inhibiting auxin transport and GOBLET (GOB) activity, and by interacting with tomato BRANCHED1b (SlBRC1b) to control ABA levels within axillary buds. Collectively, our data provide a new mechanism by which the miR156/SPL/SBP hub regulates shoot branching, and suggest that modulating SlSBP15 activity might have potential applications in shaping tomato shoot architecture.


Asunto(s)
MicroARNs , Proteínas de Plantas , Solanum lycopersicum , Regulación de la Expresión Génica de las Plantas , Hormonas , MicroARNs/genética , MicroARNs/metabolismo , Brotes de la Planta/metabolismo , Plantas Modificadas Genéticamente/genética , Regiones Promotoras Genéticas , Solanum lycopersicum/genética , Proteínas de Plantas/metabolismo
4.
J Exp Bot ; 74(20): 6349-6368, 2023 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-37157899

RESUMEN

S-Nitrosoglutathione plays a central role in nitric oxide (NO) homeostasis, and S-nitrosoglutathione reductase (GSNOR) regulates the cellular levels of S-nitrosoglutathione across kingdoms. Here, we investigated the role of endogenous NO in shaping shoot architecture and controlling fruit set and growth in tomato (Solanum lycopersicum). SlGSNOR silencing promoted shoot side branching and led to reduced fruit size, negatively impacting fruit yield. Greatly intensified in slgsnor knockout plants, these phenotypical changes were virtually unaffected by SlGSNOR overexpression. Silencing or knocking out of SlGSNOR intensified protein tyrosine nitration and S-nitrosation and led to aberrant auxin production and signaling in leaf primordia and fruit-setting ovaries, besides restricting the shoot basipetal polar auxin transport stream. SlGSNOR deficiency triggered extensive transcriptional reprogramming at early fruit development, reducing pericarp cell proliferation due to restrictions on auxin, gibberellin, and cytokinin production and signaling. Abnormal chloroplast development and carbon metabolism were also detected in early-developing NO-overaccumulating fruits, possibly limiting energy supply and building blocks for fruit growth. These findings provide new insights into the mechanisms by which endogenous NO fine-tunes the delicate hormonal network controlling shoot architecture, fruit set, and post-anthesis fruit development, emphasizing the relevance of NO-auxin interaction for plant development and productivity.


Asunto(s)
Reguladores del Crecimiento de las Plantas , Solanum lycopersicum , Reguladores del Crecimiento de las Plantas/metabolismo , Oxidorreductasas/metabolismo , Solanum lycopersicum/genética , Frutas/metabolismo , S-Nitrosoglutatión/metabolismo , Ácidos Indolacéticos/metabolismo , Homeostasis , Óxido Nítrico/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulación de la Expresión Génica de las Plantas
5.
Planta ; 257(4): 67, 2023 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-36843173

RESUMEN

MAIN CONCLUSION: Blue light exposure delays tomato seed germination by decreasing endosperm-degrading hydrolase activities, a process regulated by CRY1a-dependent signaling and the hormonal balance between ABA and GA. The germination of tomato seeds (Solanum lycopersicum L.) is tightly controlled by an internal hormonal balance, which is also influenced by environmental factors such as light. In this study, we investigated the blue light (BL)-mediated impacts on physiological, biochemical, and molecular processes during the germination of the blue light photoreceptor CRYPTOCHROME 1a loss-of-function mutant (cry1a) and of the hormonal tomato mutants notabilis (not, deficient in ABA) and procera (pro, displaying a GA-constitutive response). Seeds were germinated in a controlled chamber in the dark and under different intensities of continuous BL (ranging from 1 to 25 µmol m-2 s-1). In general, exposure to BL delayed tomato seed germination in a fluency rate-dependent way due to negative impacts on the activities of endosperm-degrading hydrolases, such as endo-ß-mannanase, ß-mannosidase, and α-galactosidase. However, not and pro mutants presented higher germination speed index (GSI) compared to WT despite the BL influence, associated with higher hydrolase activities, especially evident in pro, indicating that the ABA/GA hormonal balance is important to diminish BL inhibition over tomato germination. The cry1a germination percentage was higher than in WT in the dark but its GSI was lower under BL exposure, suggesting that functional CRY1a is required for BL-dependent germination. BL inhibits the expression of GA-biosynthetic genes, and induces GA-deactivating and ABA-biosynthetic genes. The magnitude of the BL influence over the hormone-related transcriptional profile is also dependent upon CRY1a, highlighting the complex interplay between light and hormonal pathways. These results contribute to a better understanding of BL-induced events behind the photoregulation of tomato seed germination.


Asunto(s)
Endospermo , Solanum lycopersicum , Endospermo/genética , Endospermo/metabolismo , Solanum lycopersicum/genética , Germinación , Semillas/fisiología , Criptocromos/genética , Criptocromos/metabolismo , beta-Manosidasa/genética , beta-Manosidasa/metabolismo , Percepción , Ácido Abscísico/metabolismo , Giberelinas/metabolismo , Regulación de la Expresión Génica de las Plantas
6.
Int J Mol Sci ; 24(2)2023 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-36674492

RESUMEN

Fruits are unique to flowering plants and confer a selective advantage to these species by facilitating seed maturation and dispersal [...].


Asunto(s)
Frutas , Dispersión de Semillas , Frutas/fisiología , Dispersión de Semillas/fisiología , Semillas
7.
Plant Mol Biol ; 111(4-5): 365-378, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36587296

RESUMEN

Tocopherols are potent membrane-bound antioxidant molecules that are paramount for plant physiology and also important for human health. In the past years, chlorophyll catabolism was identified as the primary source of phytyl diphosphate for tocopherol synthesis by the action of two enzymes, PHYTOL KINASE (VTE5) and PHYTHYL PHOSPHATE KINASE (VTE6) that are able to recycle the chlorophyll-derived phytol. While VTE5 and VTE6 were proven essential for tocopherol metabolism in tomato fruits, it remains unknown whether they are rate-limiting steps in this pathway. To address this question, transgenic tomato plants expressing AtVTE5 and AtVTE6 in a fruit-specific manner were generated. Although ripe transgenic fruits exhibited higher amounts of tocopherol, phytol recycling revealed a more intimate association with chlorophyll than with tocopherol content. Interestingly, protein-protein interactions assays showed that VTE5 and VTE6 are complexed, channeling free phytol and phytyl-P, thus mitigating their cytotoxic nature. Moreover, the analysis of tocopherol accumulation dynamics in roots, a chlorophyll-devoid organ, revealed VTE5-dependent tocopherol accumulation, hinting at the occurrence of shoot-to-root phytol trafficking. Collectively, these results demonstrate that phytol recycling is essential for tocopherol biosynthesis, even in chlorophyll-devoid organs, yet it is not the rate-limiting step for this pathway under normal growth conditions.


Asunto(s)
Solanum lycopersicum , Tocoferoles , Humanos , Tocoferoles/metabolismo , Frutas/metabolismo , Fitol/metabolismo , Clorofila/metabolismo , Plantas Modificadas Genéticamente/metabolismo
9.
Plant Mol Biol ; 110(3): 253-268, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35798935

RESUMEN

KEY MESSAGE: SlBBX28 is a positive regulator of auxin metabolism and signaling, affecting plant growth and flower number in tomato B-box domain-containing proteins (BBXs) comprise a family of transcription factors that regulate several processes, such as photomorphogenesis, flowering, and stress responses. For this reason, attention is being directed toward the functional characterization of these proteins, although knowledge in species other than Arabidopsis thaliana remains scarce. Particularly in the tomato, Solanum lycopersicum, only three out of 31 SlBBX proteins have been functionally characterized to date. To deepen the understanding of the role of these proteins in tomato plant development and yield, SlBBX28, a light-responsive gene, was constitutively silenced, resulting in plants with smaller leaves and fewer flowers per inflorescence. Moreover, SlBBX28 knockdown reduced hypocotyl elongation in darkness-grown tomato. Analyses of auxin content and responsiveness revealed that SlBBX28 promotes auxin-mediated responses. Altogether, the data revealed that SlBBX28 promotes auxin production and signaling, ultimately leading to proper hypocotyl elongation, leaf expansion, and inflorescence development, which are crucial traits determining tomato yield.


Asunto(s)
Arabidopsis , Solanum lycopersicum , Arabidopsis/metabolismo , Flores , Regulación de la Expresión Génica de las Plantas , Ácidos Indolacéticos/metabolismo , Solanum lycopersicum/metabolismo , Desarrollo de la Planta , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
10.
Front Plant Sci ; 13: 902068, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35845673

RESUMEN

Cysteine S-nitrosation is a redox-based post-translational modification that mediates nitric oxide (NO) regulation of various aspects of plant growth, development and stress responses. Despite its importance, studies exploring protein signaling pathways that are regulated by S-nitrosation during somatic embryogenesis have not been performed. In the present study, endogenous cysteine S-nitrosation site and S-nitrosated proteins were identified by iodo-TMT labeling during somatic embryogenesis in Brazilian pine, an endangered native conifer of South America. In addition, endogenous -S-nitrosothiol (SNO) levels and S-nitrosoglutathione reductase (GSNOR) activity were determined in cell lines with contrasting embryogenic potential. Overall, we identified an array of proteins associated with a large variety of biological processes and molecular functions with some of them already described as important for somatic embryogenesis (Class IV chitinase, pyruvate dehydrogenase E1 and dehydroascorbate reductase). In total, our S-nitrosoproteome analyses identified 18 endogenously S-nitrosated proteins and 50 in vitro S-nitrosated proteins (after GSNO treatment) during cell culture proliferation and embryo development. Furthermore, SNO levels and GSNOR activity were increased during embryo formation. These findings expand our understanding of the Brazilian pine proteome and shed novel insights into the potential use of pharmacological manipulation of NO levels by using NO inhibitors and donors during somatic embryogenesis.

11.
Plant Sci ; 320: 111292, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35643622

RESUMEN

Plants face recurrent drought events, and previous stresses can influence their responses to subsequent stress episodes. Studies on drought stress memory are recent in citriculture, although they show promise as a tool for crop improvement. Here, we investigated whether stress memory mechanisms can be detected in citrus plants grafted with buds from plants subjected to recurrent water deficit. Three rootstock varieties, namely 'Rangpur Santa Cruz' lime, 'Sunki Maravilha' mandarin and 'Sunki Tropical' mandarin, in combination with 'Valencia' orange, were either maintained under full irrigation or subjected to one, two, or three water deficit cycles. Buds from 'Valencia' orange were grafted onto 'Swingle' citrumelo rootstocks and were evaluated. This combination displayed improved physiological and biochemical performance under water limitation, especially 'Valencia' buds grafted onto 'Sunki Maravilha', with better photosynthetic performance under water deficit. These findings indicate that genotype-dependent epigenetic memory is a key factor in restoring citrus plants' capacity to rely on previous stress experiences to restore better photosynthetic and physiological responses when undergoing new water deficit events. Therefore, epigenetic marks can be stored and transmitted to new citrus plants and are a promising alternative to enable increased water deficit tolerance when plants are then challenged by drought-prone environments.


Asunto(s)
Citrus sinensis , Citrus , Citrus/genética , Sequías , Fotosíntesis , Agua
12.
Front Plant Sci ; 13: 870974, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35574124

RESUMEN

Phytochrome (PHY)-mediated light and temperature perception has been increasingly implicated as important regulator of fruit development, ripening, and nutritional quality. Fruit ripening is also critically regulated by chromatin remodeling via DNA demethylation, though the molecular basis connecting epigenetic modifications in fruits and environmental cues remains largely unknown. Here, to unravel whether the PHY-dependent regulation of fruit development involves epigenetic mechanisms, an integrative analysis of the methylome, transcriptome and sRNAome of tomato fruits from phyA single and phyB1B2 double mutants was performed in immature green (IG) and breaker (BK) stages. The transcriptome analysis showed that PHY-mediated light perception regulates more genes in BK than in the early stages of fruit development (IG) and that PHYB1B2 has a more substantial impact than PHYA in the fruit transcriptome, in both analyzed stages. The global profile of methylated cytosines revealed that both PHYA and PHYB1B2 affect the global methylome, but PHYB1B2 has a greater impact on ripening-associated methylation reprogramming across gene-rich genomic regions in tomato fruits. Remarkably, promoters of master ripening-associated transcription factors (TF) (RIN, NOR, CNR, and AP2a) and key carotenoid biosynthetic genes (PSY1, PDS, ZISO, and ZDS) remained highly methylated in phyB1B2 from the IG to BK stage. The positional distribution and enrichment of TF binding sites were analyzed over the promoter region of the phyB1B2 DEGs, exposing an overrepresentation of binding sites for RIN as well as the PHY-downstream effectors PIFs and HY5/HYH. Moreover, phyA and phyB1B2 mutants showed a positive correlation between the methylation level of sRNA cluster-targeted genome regions in gene bodies and mRNA levels. The experimental evidence indicates that PHYB1B2 signal transduction is mediated by a gene expression network involving chromatin organization factors (DNA methylases/demethylases, histone-modifying enzymes, and remodeling factors) and transcriptional regulators leading to altered mRNA profile of ripening-associated genes. This new level of understanding provides insights into the orchestration of epigenetic mechanisms in response to environmental cues affecting agronomical traits.

13.
Plant Physiol ; 190(1): 113-126, 2022 08 29.
Artículo en Inglés | MEDLINE | ID: mdl-35639975

RESUMEN

Heterobaric leaves have bundle sheath extensions (BSEs) that compartmentalize the parenchyma, whereas homobaric leaves do not. The presence of BSEs affects leaf hydraulics and photosynthetic rate. The tomato (Solanum lycopersicum) obscuravenosa (obv) mutant lacks BSEs. Here, we identify the obv gene and the causative mutation, a nonsynonymous amino acid change that disrupts a C2H2 zinc finger motif in a putative transcription factor. This mutation exists as a polymorphism in the natural range of wild tomatoes but has increased in frequency in domesticated tomatoes, suggesting that the latter diversified into heterobaric and homobaric leaf types. The obv mutant displays reduced vein density, leaf hydraulic conductance and photosynthetic assimilation rate. We show that these and other pleiotropic effects on plant development, including changes in leaf insertion angle, leaf margin serration, minor vein density, and fruit shape, are controlled by OBV via changes in auxin signaling. Loss of function of the transcriptional regulator AUXIN RESPONSE FACTOR 4 (ARF4) also results in defective BSE development, revealing an additional component of a genetic module controlling aspects of leaf development important for ecological adaptation and subject to breeding selection.


Asunto(s)
Solanum lycopersicum , Ácidos Indolacéticos/metabolismo , Solanum lycopersicum/metabolismo , Fotosíntesis/genética , Fitomejoramiento , Hojas de la Planta/metabolismo , Proteínas de Plantas/metabolismo
14.
J Exp Bot ; 73(14): 4867-4885, 2022 08 11.
Artículo en Inglés | MEDLINE | ID: mdl-35439821

RESUMEN

Portulaca species can switch between C4 and crassulacean acid metabolism (CAM) depending on environmental conditions. However, the regulatory mechanisms behind this rare photosynthetic adaptation remain elusive. Using Portulaca oleracea as a model system, here we investigated the involvement of the circadian clock, plant hormones, and transcription factors in coordinating C4 and CAM gene expression. Free-running experiments in constant conditions suggested that C4 and CAM gene expression are intrinsically connected to the circadian clock. Detailed time-course, drought, and rewatering experiments revealed distinct time frames for CAM induction and reversion (days versus hours, respectively), which were accompanied by changes in abscisic acid (ABA) and cytokinin metabolism and signaling. Exogenous ABA and cytokinins were shown to promote and repress CAM expression in P. oleracea, respectively. Moreover, the drought-induced decline in C4 transcript levels was completely recovered upon cytokinin treatment. The ABA-regulated transcription factor genes HB7, NFYA7, NFYC9, TT8, and ARR12 were identified as likely candidate regulators of CAM induction following this approach, whereas NFYC4 and ARR9 were connected to C4 expression patterns. Therefore, we provide insights into the signaling events controlling C4-CAM transitions in response to water availability and over the day/night cycle, highlighting candidate genes for future functional studies in the context of facultative C4-CAM photosynthesis.


Asunto(s)
Portulaca , Ácido Abscísico , Dióxido de Carbono/metabolismo , Metabolismo Ácido de las Crasuláceas , Citocininas , Fotosíntesis/fisiología , Portulaca/genética , Portulaca/metabolismo
15.
Mol Hortic ; 2(1): 12, 2022 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-37789497

RESUMEN

Tomato production is influenced by shoot branching, which is controlled by different hormones. Here we produced tomato plants overexpressing the cytokinin-deactivating gene CYTOKININ OXYDASE 2 (CKX2). CKX2-overexpressing (CKX2-OE) plants showed an excessive growth of axillary shoots, the opposite phenotype expected for plants with reduced cytokinin content, as evidenced by LC-MS analysis and ARR5-GUS staining. The TCP transcription factor SlBRC1b was downregulated in the axillary buds of CKX2-OE and its excessive branching was dependent on a functional version of the GRAS-family gene LATERAL SUPPRESSOR (LS). Grafting experiments indicated that increased branching in CKX2-OE plants is unlikely to be mediated by root-derived signals. Crossing CKX2-OE plants with transgenic antisense plants for the strigolactone biosynthesis gene CAROTENOID CLEAVAGE DIOXYGENASE (CCD7-AS) produced an additive phenotype, indicating independent effects of cytokinin and strigolactones on increased branching. On the other hand, CKX2-OE plants showed reduced polar auxin transport and their bud outgrowth was reduced when combined with auxin mutants. Accordingly, CKX2-OE basal buds did not respond to auxin applied in the decapitated apex. Our results suggest that tomato shoot branching depends on a fine-tuning of different hormonal balances and that perturbations in the auxin status could compensate for the reduced cytokinin levels in CKX2-OE plants.

16.
Front Plant Sci ; 12: 765897, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34956263

RESUMEN

As the auxin-ethylene interaction in climacteric fruit ripening has been highlighted, the hormonal regulation of aroma changes in climacteric fruits requires clarification. The influence of both phytohormones on the volatile organic compound (VOC) metabolism was evaluated during tomato (Solanum lycopersicum L.) fruit ripening. Tomato fruits cv. Micro-Tom and Sweet Grape at the mature green stage were randomly grouped according to treatment with ethylene (ETHY), auxin (IAA), or both (ETHY + IAA). At middle ripening, Micro-Tom ETHY + IAA fruits present VOC profiles similar to those of ETHY fruits, while Sweet Grape presents VOC profiles closer to those of IAA fruits. At full ripeness, Micro-Tom and Sweet Grape ETHY + IAA fruits show profiles closer to those of IAA fruits, suggesting that the auxin overlaps the ethylene effects. Aroma compounds positively correlated with consumer preferences (2-isobutylthiazole, 6-methyl-5-hepten-2-one, and others) are identified in both cultivars and have their contents affected by both hormone treatments. The transcription of genes related to the biosynthesis of important tomato VOCs that have fatty-acid and carotenoid precursors evidences their regulation by both plant hormones. Additionally, the results indicate that the observed effects on the VOC metabolism are not restricted to the Micro-Tom cultivar, as these are also observed in the Sweet Grape cultivar. In conclusion, ethylene and auxin directly regulate the metabolic pathways related to VOC formation, impacting tomato aroma formation during ripening since Micro-Tom fruits apparently at the same maturation stage have different aromas.

17.
New Phytol ; 231(1): 365-381, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33826751

RESUMEN

Moniliophthora perniciosa causes witches' broom disease of cacao and inflicts symptoms suggestive of hormonal imbalance. We investigated whether infection of the tomato (Solanum lycopersicum) model system Micro-Tom (MT) by the Solanaceae (S)-biotype of Moniliophthora perniciosa, which causes stem swelling and hypertrophic growth of axillary shoots, results from changes in host cytokinin metabolism. Inoculation of an MT-transgenic line that overexpresses the Arabidopsis CYTOKININ OXIDASE-2 gene (35S::AtCKX2) resulted in a reduction in disease incidence and stem diameter. RNA-sequencing analysis of infected MT and 35S::AtCKX2 revealed the activation of cytokinin-responsive marker genes when symptoms were conspicuous. The expression of an Moniliophthora perniciosa tRNA-ISOPENTENYL-TRANSFERASE suggests the production of isopentenyladenine (iP), detected in mycelia grown in vitro. Inoculated MT stems showed higher levels of dihydrozeatin and trans-zeatin but not iP. The application of benzyladenine induced symptoms similar to infection, whereas applying the cytokinin receptor inhibitors LGR-991 and PI55 decreased symptoms. Moniliophthora perniciosa produces iP that might contribute to cytokinin synthesis by the host, which results in vascular and cortex enlargement, axillary shoot outgrowth, reduction in root biomass and an increase in fruit locule number. This strategy may be associated with the manipulation of sink establishment to favour infection by the fungus.


Asunto(s)
Agaricales , Cacao , Solanum lycopersicum , Citocininas , Solanum lycopersicum/genética , Enfermedad por Fitoplasma , Enfermedades de las Plantas
18.
Funct Plant Biol ; 48(7): 666-682, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33256895

RESUMEN

Previously regarded as an intriguing photosynthetic curiosity, the occurrence of C4 and Crassulacean acid metabolism (CAM) photosynthesis within a single organism has recently emerged as a source of information for future biotechnological use. Among C4/CAM facultative species, Portulaca oleracea L. has been used as a model for biochemical and gene expression analysis of C4/CAM under field and laboratory conditions. In the present work, we focussed on developing molecular tools to facilitate functional genomics studies in this species, from the optimisation of RNA isolation protocols to a method for stable genetic transformation. Eleven variations of RNA extraction procedures were tested and compared for RNA quantity and quality. Also, 7 sample sets comprising total RNA from hormonal and abiotic stress treatments, distinct plant organs, leaf developmental stages, and subspecies were used to select, among 12 reference genes, the most stable reference genes for RT-qPCR analysis of each experimental condition. Furthermore, different explant sources, Agrobacterium tumefaciens strains, and regeneration and antibiotic selection media were tested in various combinations to optimise a protocol for stable genetic transformation of P. oleracea. Altogether, we provide essential tools for functional gene analysis in the context of C4/CAM photosynthesis, including an efficient RNA isolation method, preferred reference genes for RT-qPCR normalisation for a range of experimental conditions, and a protocol to produce P. oleracea stable transformants using A. tumefaciens.


Asunto(s)
Portulaca , Dióxido de Carbono , Metabolismo Ácido de las Crasuláceas , Genómica , Fotosíntesis/genética , Portulaca/genética
19.
J Exp Bot ; 72(3): 885-903, 2021 02 11.
Artículo en Inglés | MEDLINE | ID: mdl-33245760

RESUMEN

Light drives photosynthesis and informs plants about their surroundings. Regarded as a multifunctional signaling molecule in plants, nitric oxide (NO) has been repeatedly demonstrated to interact with light signaling cascades to control plant growth, development and metabolism. During early plant development, light-triggered NO accumulation counteracts negative regulators of photomorphogenesis and modulates the abundance of, and sensitivity to, plant hormones to promote seed germination and de-etiolation. In photosynthetically active tissues, NO is generated at distinct rates under light or dark conditions and acts at multiple target sites within chloroplasts to regulate photosynthetic reactions. Moreover, changes in NO concentrations in response to light stress promote plant defenses against oxidative stress under high light or ultraviolet-B radiation. Here we review the literature on the interaction of NO with the complicated light and hormonal signaling cascades controlling plant photomorphogenesis and light stress responses, focusing on the recently identified molecular partners and action mechanisms of NO in these events. We also discuss the versatile role of NO in regulating both photosynthesis and light-dependent stomatal movements, two key determinants of plant carbon gain. The regulation of nitrate reductase (NR) by light is highlighted as vital to adjust NO production in plants living under natural light conditions.


Asunto(s)
Óxido Nítrico , Reguladores del Crecimiento de las Plantas , Luz , Nitrato-Reductasa , Desarrollo de la Planta , Plantas
20.
J Exp Bot ; 72(3): 941-958, 2021 02 11.
Artículo en Inglés | MEDLINE | ID: mdl-33165620

RESUMEN

Nitric oxide (NO) has been implicated as part of the ripening regulatory network in fleshy fruits. However, very little is known about the simultaneous action of NO on the network of regulatory events and metabolic reactions behind ripening-related changes in fruit color, taste, aroma and nutritional value. Here, we performed an in-depth characterization of the concomitant changes in tomato (Solanum lycopersicum) fruit transcriptome and metabolome associated with the delayed-ripening phenotype caused by NO supplementation at the pre-climacteric stage. Approximately one-third of the fruit transcriptome was altered in response to NO, including a multilevel down-regulation of ripening regulatory genes, which in turn restricted the production and tissue sensitivity to ethylene. NO also repressed hydrogen peroxide-scavenging enzymes, intensifying nitro-oxidative stress and S-nitrosation and nitration events throughout ripening. Carotenoid, tocopherol, flavonoid and ascorbate biosynthesis were differentially affected by NO, resulting in overaccumulation of ascorbate (25%) and flavonoids (60%), and impaired lycopene production. In contrast, the biosynthesis of compounds related to tomato taste (sugars, organic acids, amino acids) and aroma (volatiles) was slightly affected by NO. Our findings indicate that NO triggers extensive transcriptional and metabolic rewiring at the early ripening stage, modifying tomato antioxidant composition with minimal impact on fruit taste and aroma.


Asunto(s)
Frutas/fisiología , Óxido Nítrico/fisiología , Solanum lycopersicum/fisiología , Etilenos , Regulación de la Expresión Génica de las Plantas , Fenotipo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...