Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
iScience ; 26(10): 107937, 2023 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-37810214

RESUMEN

To explore mechanisms of response to combined PD-1/CTLA-4 immune checkpoint blockade (ICB) treatment in individual cell types, we generated scRNA-seq using a mouse model of invasive urothelial carcinoma with three conditions: untreated tumor, treated tumor, and tumor treated after CD4+ T cell depletion. After classifying tumor cells based on detection of somatic variants and assigning non-tumor cell types using SingleR, we performed differential expression analysis, overrepresentation analysis, and gene set enrichment analysis (GSEA) within each cell type. GSEA revealed that endothelial cells were enriched for upregulated IFN-g response genes when comparing treated cells to both untreated cells and cells treated after CD4+ T cell depletion. Functional analysis showed that knocking out IFNgR1 in endothelial cells inhibited treatment response. Together, these results indicated that IFN-g signaling in endothelial cells is a key mediator of ICB induced anti-tumor activity.

2.
bioRxiv ; 2023 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-37034778

RESUMEN

To explore mechanisms of response to combined PD-1/CTLA-4 immune checkpoint blockade (ICB) treatment in individual cell types, we generated scRNA-seq using a mouse model of invasive urothelial carcinoma with three conditions: untreated tumor, treated tumor, and tumor treated after CD4+ T cell depletion. After classifying tumor cells based on detection of somatic variants and assigning non-tumor cell types using SingleR, we performed differential expression analysis, overrepresentation analysis, and gene set enrichment analysis (GSEA) within each cell type. GSEA revealed that endothelial cells were enriched for upregulated IFN-g response genes when comparing treated cells to both untreated cells and cells treated after CD4+ T cell depletion. Functional analysis showed that knocking out IFNgR1 in endothelial cells inhibited treatment response. Together, these results indicated that IFN-g signaling in endothelial cells is a key mediator of ICB induced anti-tumor activity.

3.
Sci Immunol ; 8(82): eabg2200, 2023 04 14.
Artículo en Inglés | MEDLINE | ID: mdl-37027480

RESUMEN

Neoantigens are tumor-specific peptide sequences resulting from sources such as somatic DNA mutations. Upon loading onto major histocompatibility complex (MHC) molecules, they can trigger recognition by T cells. Accurate neoantigen identification is thus critical for both designing cancer vaccines and predicting response to immunotherapies. Neoantigen identification and prioritization relies on correctly predicting whether the presenting peptide sequence can successfully induce an immune response. Because most somatic mutations are single-nucleotide variants, changes between wild-type and mutated peptides are typically subtle and require cautious interpretation. A potentially underappreciated variable in neoantigen prediction pipelines is the mutation position within the peptide relative to its anchor positions for the patient's specific MHC molecules. Whereas a subset of peptide positions are presented to the T cell receptor for recognition, others are responsible for anchoring to the MHC, making these positional considerations critical for predicting T cell responses. We computationally predicted anchor positions for different peptide lengths for 328 common HLA alleles and identified unique anchoring patterns among them. Analysis of 923 tumor samples shows that 6 to 38% of neoantigen candidates are potentially misclassified and can be rescued using allele-specific knowledge of anchor positions. A subset of anchor results were orthogonally validated using protein crystallography structures. Representative anchor trends were experimentally validated using peptide-MHC stability assays and competition binding assays. By incorporating our anchor prediction results into neoantigen prediction pipelines, we hope to formalize, streamline, and improve the identification process for relevant clinical studies.


Asunto(s)
Antígenos de Neoplasias , Neoplasias , Humanos , Antígenos de Neoplasias/genética , Linfocitos T , Mutación , Péptidos/genética
4.
Nat Commun ; 14(1): 1589, 2023 03 22.
Artículo en Inglés | MEDLINE | ID: mdl-36949070

RESUMEN

Somatic mutations within non-coding regions and even exons may have unidentified regulatory consequences that are often overlooked in analysis workflows. Here we present RegTools ( www.regtools.org ), a computationally efficient, free, and open-source software package designed to integrate somatic variants from genomic data with splice junctions from bulk or single cell transcriptomic data to identify variants that may cause aberrant splicing. We apply RegTools to over 9000 tumor samples with both tumor DNA and RNA sequence data. RegTools discovers 235,778 events where a splice-associated variant significantly increases the splicing of a particular junction, across 158,200 unique variants and 131,212 unique junctions. To characterize these somatic variants and their associated splice isoforms, we annotate them with the Variant Effect Predictor, SpliceAI, and Genotype-Tissue Expression junction counts and compare our results to other tools that integrate genomic and transcriptomic data. While many events are corroborated by the aforementioned tools, the flexibility of RegTools also allows us to identify splice-associated variants in known cancer drivers, such as TP53, CDKN2A, and B2M, and other genes.


Asunto(s)
Neoplasias , Transcriptoma , Humanos , Transcriptoma/genética , Genómica , Empalme del ARN/genética , Genoma , Neoplasias/genética , Empalme Alternativo/genética
5.
Nucleic Acids Res ; 49(D1): D1144-D1151, 2021 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-33237278

RESUMEN

The Drug-Gene Interaction Database (DGIdb, www.dgidb.org) is a web resource that provides information on drug-gene interactions and druggable genes from publications, databases, and other web-based sources. Drug, gene, and interaction data are normalized and merged into conceptual groups. The information contained in this resource is available to users through a straightforward search interface, an application programming interface (API), and TSV data downloads. DGIdb 4.0 is the latest major version release of this database. A primary focus of this update was integration with crowdsourced efforts, leveraging the Drug Target Commons for community-contributed interaction data, Wikidata to facilitate term normalization, and export to NDEx for drug-gene interaction network representations. Seven new sources have been added since the last major version release, bringing the total number of sources included to 41. Of the previously aggregated sources, 15 have been updated. DGIdb 4.0 also includes improvements to the process of drug normalization and grouping of imported sources. Other notable updates include the introduction of a more sophisticated Query Score for interaction search results, an updated Interaction Score, the inclusion of interaction directionality, and several additional improvements to search features, data releases, licensing documentation and the application framework.


Asunto(s)
Colaboración de las Masas , Bases de Datos Factuales , Bases de Datos Genéticas , Drogas en Investigación/farmacología , Genoma Humano/efectos de los fármacos , Medicamentos bajo Prescripción/farmacología , Bases de Datos de Compuestos Químicos , Drogas en Investigación/química , Genotipo , Humanos , Internet , Bases del Conocimiento , Fenotipo , Medicamentos bajo Prescripción/química , Programas Informáticos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...