Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 25(6)2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38542294

RESUMEN

An important hallmark of radiation dermatitis is the impairment of the mitotic ability of the stem/progenitor cells in the basal cell layers due to radiation-induced DNA damage, leading to suppressed cell renewal in the epidermis. However, this mechanism alone does not adequately explain the complex pathogenesis of radiation-induced skin injury. In this review, we summarize the latest findings on the complex pathogenesis of radiation dermatitis and correlate these with the clinical features of radiation-induced skin reactions. The current studies show that skin exposure to ionizing radiation induces cellular senescence in the epidermal keratinocytes. As part of their epithelial stress response, these senescent keratinocytes secrete pro-inflammatory mediators, thereby triggering skin inflammation. Keratinocyte-derived cytokines and chemokines modulate intercellular communication with the immune cells, activating skin-resident and recruiting skin-infiltrating immune cells within the epidermis and dermis, thereby orchestrating the inflammatory response to radiation-induced tissue damage. The increased expression of specific chemoattractant chemokines leads to increased recruitment of neutrophils into the irradiated skin, where they release cytotoxic granules that are responsible for the exacerbation of an inflammatory state. Moreover, the importance of IL-17-expressing γδ-T cells to the radiation-induced hyperproliferation of keratinocytes was demonstrated, leading to reactive hyperplasia of the epidermis. Radiation-induced, reactive hyperproliferation of the keratinocytes disturbs the fine-tuned keratinization and cornification processes, leading to structural dysfunction of the epidermal barrier. In summary, in response to ionizing radiation, epidermal keratinocytes have important structural and immunoregulatory barrier functions in the skin, coordinating interacting immune responses to eliminate radiation-induced damage and to initiate the healing process.


Asunto(s)
Dermatitis , Radiodermatitis , Neoplasias Cutáneas , Humanos , Epidermis/metabolismo , Queratinocitos/metabolismo , Piel/patología , Radiodermatitis/patología , Dermatitis/patología , Neoplasias Cutáneas/patología , Quimiocinas/metabolismo
2.
Int J Radiat Oncol Biol Phys ; 118(3): 801-816, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-37758068

RESUMEN

PURPOSE: Histone variant H2A.J is associated with premature senescence after ionizing radiation (IR) and modulates senescence-associated secretory phenotype (SASP). Using constitutive H2A.J knock-out mice, the role of H2A.J was investigated in radiation dermatitis. METHODS AND MATERIALS: H2A.J wild-type (WT) and knock-out (KO) mice were exposed to moderate or high IR doses (≤20 Gy, skinfold IR). Radiation-induced skin reactions were investigated up to 2 weeks post-IR at macroscopic and microscopic levels. H2A.J and other senescence markers, as well as DNA damage and proliferation markers, were studied by immunohistochemistry, immunofluorescence, and electron microscopy. After high-dose IR, protein-coding transcriptomes were analyzed by RNA sequencing, immune cell infiltration by flow cytometry, and gene expression by reverse transcription polymerase chain reaction in (non-) irradiated WT versus KO skin. RESULTS: In WT skin, epidermal keratinocytes showed time- and dose-dependent H2A.J accumulation after IR exposure. Unexpectedly, stronger inflammatory reactions with increased epidermal thickness and progressive hair follicle loss were observed in irradiated KO versus WT skin. Clearly more radiation-induced senescence was observed in keratinocyte populations of KO skin after moderate and high doses, with hair follicle stem cells being particularly badly damaged, leading to follicle atrophy. After high-dose IR, transcriptomic analysis revealed enhanced senescence-associated signatures in irradiated KO skin, with intensified release of SASP factors. Flow cytometric analysis indicated increased immune cell infiltration in both WT and KO skin; however, specific chemokine-mediated signaling in irradiated KO skin led to more neutrophil recruitment, thereby aggravating radiation toxicities. Increased skin damage in irradiated KO skin led to hyperproliferation, abnormal differentiation, and cornification of keratinocytes, accompanied by increased upregulation of transcription-factor JunB. CONCLUSIONS: Lack of radiation-induced H2A.J expression in keratinocytes is associated with increased senescence induction, modulation of SASP expression, and exacerbated inflammatory skin reactions. Hence, epigenetic H2A.J-mediated gene expression in response to IR regulates keratinocyte immune functions and plays an essential role in balancing the inflammatory response during radiation dermatitis.


Asunto(s)
Histonas , Radiodermatitis , Animales , Ratones , Histonas/metabolismo , Piel/efectos de la radiación , Queratinocitos/fisiología , Radiación Ionizante , Senescencia Celular/efectos de la radiación
3.
Cells ; 12(6)2023 03 16.
Artículo en Inglés | MEDLINE | ID: mdl-36980257

RESUMEN

PURPOSE: Radiation-induced senescence is characterized by profound changes in chromatin organization with the formation of Senescence-Associated-Heterochromatin-Foci (SAHF) and DNA-Segments-with-Chromatin-Alterations-Reinforcing-Senescence (DNA-SCARS). Importantly, senescent cells also secrete complex combinations of pro-inflammatory factors, referred as Senescence-Associated-Secretory-Phenotype (SASP). Here, we analyzed the epigenetic mechanism of histone variant H2A.J in establishing radiation-induced senescence. EXPERIMENTAL DESIGN: Primary and genetically-modified lung fibroblasts with down- or up-regulated H2A.J expression were exposed to ionizing radiation and were analyzed for the formation of SAHF and DNA-SCARS by immunofluorescence microscopy. Dynamic changes in chromatin organization and accessibility, transcription factor recruitment, and transcriptome signatures were mapped by ATAC-seq and RNA-seq analysis. The secretion of SASP factors and potential bystander effects were analyzed by ELISA and RT-PCR. Lung tissue of mice exposed to different doses were analyzed by the digital image analysis of H2A.J-immunohistochemistry. RESULTS: Differential incorporation of H2A.J has profound effects on higher-order chromatin organization and on establishing the epigenetic state of senescence. Integrative analyses of ATAC-seq and RNA-seq datasets indicate that H2A.J-associated changes in chromatin accessibility of regulatory regions decisively modulates transcription factor recruitment and inflammatory gene expression, resulting in an altered SASP secretome. In lung parenchyma, pneumocytes show dose-dependent H2A.J expression in response to radiation-induced DNA damage, therefore contributing to pro-inflammatory tissue reactions. CONCLUSIONS: The fine-tuned incorporation of H2A.J defines the epigenetic landscape for driving the senescence programme in response to radiation-induced DNA damage. Deregulated H2A.J deposition affects chromatin remodeling, transcription factor recruitment, and the pro-inflammatory secretome. Our findings provide new mechanistic insights into DNA-damage triggered epigenetic mechanisms governing the biological processes of radiation-induced injury.


Asunto(s)
Cicatriz , Histonas , Animales , Ratones , Histonas/metabolismo , Cromatina , Heterocromatina , Factores de Transcripción/metabolismo , Radiación Ionizante
4.
Cells ; 11(2)2022 01 13.
Artículo en Inglés | MEDLINE | ID: mdl-35053389

RESUMEN

Irreparable DNA damage following ionizing radiation (IR) triggers prolonged DNA damage response and induces premature senescence. Cellular senescence is a permanent state of cell-cycle arrest characterized by chromatin restructuring, altered nuclear morphology and acquisition of secretory phenotype, which contributes to senescence-related inflammation. However, the mechanistic connections for radiation-induced DNA damage that trigger these senescence-associated hallmarks are poorly understood. In our in vitro model of radiation-induced senescence, mass spectrometry-based proteomics was combined with high-resolution imaging techniques to investigate the interrelations between altered chromatin compaction, nuclear envelope destabilization and nucleo-cytoplasmic chromatin blebbing. Our findings confirm the general pathophysiology of the senescence-response, with disruption of nuclear lamin organization leading to extensive chromatin restructuring and destabilization of the nuclear membrane with release of chromatin fragments into the cytosol, thereby activating cGAS-STING-dependent interferon signaling. By serial block-face scanning electron microscopy (SBF-SEM) whole-cell datasets were acquired to investigate the morphological organization of senescent fibroblasts. High-resolution 3-dimensional (3D) reconstruction of the complex nuclear shape allows us to precisely visualize the segregation of nuclear blebs from the main nucleus and their fusion with lysosomes. By multi-view 3D electron microscopy, we identified nanotubular channels formed in lamin-perturbed nuclei of senescent fibroblasts; the potential role of these nucleo-cytoplasmic nanotubes for expulsion of damaged chromatin has to be examined.


Asunto(s)
Núcleo Celular/efectos de la radiación , Núcleo Celular/ultraestructura , Senescencia Celular/efectos de la radiación , Fibroblastos/efectos de la radiación , Fibroblastos/ultraestructura , Imagenología Tridimensional , Microscopía Electrónica , Radiación Ionizante , Línea Celular , Núcleo Celular/patología , Forma de la Célula/efectos de la radiación , Ensamble y Desensamble de Cromatina , Fibroblastos/patología , Humanos , Nanotubos/ultraestructura , Proteómica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...