Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 10(1): 2551, 2019 06 11.
Artículo en Inglés | MEDLINE | ID: mdl-31186428

RESUMEN

Respiratory complex I plays a central role in cellular energy metabolism coupling NADH oxidation to proton translocation. In humans its dysfunction is associated with degenerative diseases. Here we report the structure of the electron input part of Aquifex aeolicus complex I at up to 1.8 Å resolution with bound substrates in the reduced and oxidized states. The redox states differ by the flip of a peptide bond close to the NADH binding site. The orientation of this peptide bond is determined by the reduction state of the nearby [Fe-S] cluster N1a. Fixation of the peptide bond by site-directed mutagenesis led to an inactivation of electron transfer and a decreased reactive oxygen species (ROS) production. We suggest the redox-gated peptide flip to represent a previously unrecognized molecular switch synchronizing NADH oxidation in response to the redox state of the complex as part of an intramolecular feed-back mechanism to prevent ROS production.


Asunto(s)
Complejo I de Transporte de Electrón/química , Escherichia coli/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Bacterias/química , Bacterias/metabolismo , Escherichia coli/química , Proteínas de Escherichia coli/química , Proteínas Hierro-Azufre/química , Mutagénesis Sitio-Dirigida , NAD/química , Oxidación-Reducción
2.
Sci Rep ; 6: 37743, 2016 11 25.
Artículo en Inglés | MEDLINE | ID: mdl-27886223

RESUMEN

A major gap of knowledge in metalloproteins is the identity of the prefolded state of the protein before cofactor insertion. This holds for molybdoenzymes serving multiple purposes for life, especially in energy harvesting. This large group of prokaryotic enzymes allows for coordination of molybdenum or tungsten cofactors (Mo/W-bisPGD) and Fe/S clusters. Here we report the structural data on a cofactor-less enzyme, the nitrate reductase respiratory complex and characterize the conformational changes accompanying Mo/W-bisPGD and Fe/S cofactors insertion. Identified conformational changes are shown to be essential for recognition of the dedicated chaperone involved in cofactors insertion. A solvent-exposed salt bridge is shown to play a key role in enzyme folding after cofactors insertion. Furthermore, this salt bridge is shown to be strictly conserved within this prokaryotic molybdoenzyme family as deduced from a phylogenetic analysis issued from 3D structure-guided multiple sequence alignment. A biochemical analysis with a distantly-related member of the family, respiratory complex I, confirmed the critical importance of the salt bridge for folding. Overall, our results point to a conserved cofactors insertion mechanism within the Mo/W-bisPGD family.


Asunto(s)
Metaloproteínas/metabolismo , Molibdeno/metabolismo , Nitrato-Reductasa/metabolismo , Secuencia de Aminoácidos , Metaloproteínas/química , Nitrato-Reductasa/química , Oxidación-Reducción , Pliegue de Proteína , Dispersión del Ángulo Pequeño , Homología de Secuencia de Aminoácido , Difracción de Rayos X
3.
Biochemistry ; 54(18): 2799-801, 2015 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-25897800

RESUMEN

Respiratory complex I couples the electron transfer exclusively from NADH to a quinone with the translocation of protons across the membrane. However, Escherichia coli adapts to imposed high cellular NADPH concentrations by selecting the mutations E183A(F) and E183G(F) that lead to a high catalytic efficiency of complex I with NADPH. Other mutations at position E183(F) resulting in an efficient NADPH oxidation were not selected. Here we show that the naturally occurring variants exhibit a remarkably low level of production of reactive oxygen species, a byproduct of NAD(P)H oxidation, that besides high catalytic efficiency might be favored by natural selection.


Asunto(s)
Complejo I de Transporte de Electrón/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Biocatálisis , Complejo I de Transporte de Electrón/genética , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Mutación , NADP/metabolismo , Oxidación-Reducción
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA