Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
iScience ; 27(3): 109028, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38433904

RESUMEN

Embodied emissions from the production of building materials account for 17% of China's carbon dioxide (CO2) emissions and are important to focus on as China aims to achieve its carbon neutrality goals. However, there is a lack of systematic assessments on embodied emissions reduction potential of building materials that consider both the heterogeneous industrial characteristics as well as the Chinese buildings sector context. Here, we developed an integrated model that combines future demand of building materials in China with the strategies to reduce CO2 emissions associated with their production, using, and recycling. We found that measures to improve material efficiency in the value-chain has the largest CO2 mitigation potential before 2030 in both Low Carbon and Carbon Neutrality Scenarios, and continues to be significant through 2060. Policies to accelerate material efficiency practices, such as incorporating embodied emissions in building codes and conducting robust research, development, and demonstration (RD&D) in carbon removal are critical.

2.
Sci Rep ; 11(1): 20414, 2021 10 14.
Artículo en Inglés | MEDLINE | ID: mdl-34650151

RESUMEN

China needs to drastically reduce carbon dioxide (CO2) emissions from heavy-duty trucks (HDTs), a key emitter in the growing transport sector, in order to address energy security concerns and meet its climate targets. We address existing research gaps by modeling feasibility, applicability, and energy and emissions impacts of multiple decarbonization strategies at different points in time. China still relies heavily on coal power, so impacts of new HDT technologies depend on the timing of their introduction relative to progress toward non-fossil power. We use a bottom-up model to simulate HDT energy consumption and CO2 emissions through 2050. Results show that beginning to deploy battery electric and fuel-cell HDTs as early as 2020 and 2035, respectively, could achieve significant and the largest CO2 emissions reduction by 2050 with a decarbonized power sector. However, viable near-term strategies-improving efficiency and logistics, switching to liquefied natural gas-could halve HDTs' current diesel consumption and CO2 emissions by 2050. Our results underscore the need for a mix of near- and long-term policy and technology options to decarbonize China's HDTs.

4.
Nature ; 468(7322): 367-9, 2010 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-21085152
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...