Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 86
Filtrar
1.
Cancer Discov ; 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38767413

RESUMEN

High-grade gliomas (HGG) are deadly diseases for both adult and pediatric patients. Recently, it has been shown that neuronal activity promotes progression of multiple subgroups of HGG. However, epigenetic mechanisms that govern this process remain elusive. Here we report that the chromatin remodeler CHD2 regulates neuron-glioma interactions in diffuse midline glioma (DMG) characterized by onco-histone H3.1K27M. Depletion of CHD2 in H3.1K27M DMG cells compromises cell viability and neuron-to-glioma synaptic connections in vitro, neuron-induced proliferation of H3.1K27M DMG cells in vitro and in vivo, activity-dependent calcium transients in vivo, and extends the survival of H3.1K27M DMG-bearing mice. Mechanistically, CHD2 coordinates with the transcription factor FOSL1 to control the expression of axon-guidance and synaptic genes in H3.1K27M DMG cells. Together, our study reveals a mechanism whereby CHD2 controls the intrinsic gene program of the H3.1K27M DMG subtype, which in turn regulates the tumor growth-promoting interactions of glioma cells with neurons.

2.
Mol Cancer Ther ; 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38710101

RESUMEN

PURPOSE: Oncolytic virotherapy or immunovirotherapy is a strategy that utilizes viruses to selectively infect and kill tumor cells while also stimulating an immune response against the tumor. Early clinical trials in both pediatric and adult patients using oncolytic herpes simplex viruses (oHSVs) have demonstrated safety and promising efficacy; however, combinatorial strategies designed to enhance oncolysis while also promoting durable T cell responses for sustaining disease remission are likely required. We hypothesized that combining the direct tumor cell killing and innate immune stimulation by oHSV with a vaccine that promotes T cell mediated immunity may lead to more durable tumor regression. EXPERIMENTAL DESIGN: To this end, we investigated the preclinical efficacy and potential synergy of combining oHSV with a self-assembling nanoparticle vaccine co-delivering peptide antigens and Toll-like receptor-7 and -8 agonists (TLR-7/8a) (referred to as SNAPvax™), that induces robust tumor specific T cell immunity. We then assessed how timing of the treatments (i.e., vaccine before or after oHSV) impacts T cell responses, viral replication, and preclinical efficacy. RESULTS: The sequence of treatments was critical, as survival was significantly enhanced when the SNAPvax™ vaccine was given prior to oHSV. Increased clinical efficacy was associated with reduced tumour volume and increases in virus replication and tumor antigen specific CD8+ T cells. CONCLUSIONS: These findings substantiate the criticality of combination immunotherapy timing and provide preclinical support for combining SNAPvax with oHSV as a promising treatment approach for both pediatric and adult tumors.

3.
J Clin Invest ; 134(2)2024 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-38226619

RESUMEN

Since the discovery that cGAS/STING recognizes endogenous DNA released from dying cancer cells and induces type I interferon and antitumor T cell responses, efforts to understand and therapeutically target the STING pathway in cancer have ensued. Relative to other cancer types, the glioma immune microenvironment harbors few infiltrating T cells, but abundant tumor-associated myeloid cells, possibly explaining disappointing responses to immune checkpoint blockade therapies in cohorts of patients with glioblastoma. Notably, unlike most extracranial tumors, STING expression is absent in the malignant compartment of gliomas, likely due to methylation of the STING promoter. Nonetheless, several preclinical studies suggest that inducing cGAS/STING signaling in the glioma immune microenvironment could be therapeutically beneficial, and cGAS/STING signaling has been shown to mediate inflammatory and antitumor effects of other modalities either in use or being developed for glioblastoma therapy, including radiation, tumor-treating fields, and oncolytic virotherapy. In this Review, we discuss cGAS/STING signaling in gliomas, its implications for glioma immunobiology, compartment-specific roles for STING signaling in influencing immune surveillance, and efforts to target STING signaling - either directly or indirectly - for antiglioma therapy.


Asunto(s)
Glioblastoma , Glioma , Humanos , Glioblastoma/terapia , Nucleotidiltransferasas/genética , Nucleotidiltransferasas/metabolismo , Transducción de Señal , ADN , Microambiente Tumoral
4.
Transl Oncol ; 40: 101875, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38183802

RESUMEN

HSV G207, a double-stranded, DNA virus, and the polio:rhinovirus chimera, PVSRIPO, a single positive-strand RNA virus, are viral immunotherapies being used to treat pediatric malignant brain tumors in clinical trials. The purpose of this work is to elucidate general response patterns and putative biomarkers of response. Multiple pediatric high-grade glioma and medulloblastoma cell lines were treated with various multiplicities of infection of G207 or PVSRIPO. There was a significant inverse correlation between expression of one HSV cellular receptor, CD111, and the lethal dose of 50% of cells (LD50) of cells treated with G207 (r = -0.985, P<0.001) but no correlation between PVSRIPO cellular receptor expression (CD155) and LD50. RNA sequencing of control cells and cells treated for 8 and 24 h revealed that there were few shared differentially expressed (DE) genes between cells treated with PVSRIPO and G207: GCLM, LANCL2, and RBM3 were enriched whilst ADAMTS1 and VEGFA were depleted. Likewise, there were few shared DE genes enriched between medulloblastoma and high-grade glioma cell lines treated with G207: GPSM2, CHECK2, SEPTIN2, EIF4G2, GCLM, GDAP1, LANCL2, and PWP1.  Treatment with G207 and PVSRIPO appear to cause disparate gene enrichment and depletion suggesting disparate molecular mechanisms in malignant pediatric brain tumors.

5.
J Neurosurg Pediatr ; 33(4): 359-366, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38215438

RESUMEN

OBJECTIVE: Relatively little is known about the safety and accuracy of catheter placement for oncolytic viral therapy in children with malignant brain tumors. Accordingly, this study combines data from two phase I clinical trials that employed viral immunotherapy across two institutions to describe the adverse event profile, safety, and accuracy associated with the stereotactic placement and subsequent removal of intratumoral catheters. METHODS: Children with progressive/recurrent supratentorial malignant tumors were enrolled in two clinical trials (NCT03043391 and NCT02457845) and treated with either the recombinant polio:rhinovirus (lerapolturev) or the genetically modified oncolytic herpesvirus (G207). Age, sex, race, tumor diagnosis, and tumor location were analyzed. Events related to the catheter placement or removal were categorized. A catheter that was either pulled back or could not be used was defined as "misplaced." Neuronavigation software was used to analyze the accuracy of catheter placement for NCT03043391. Descriptive statistics were performed. RESULTS: Nineteen patients were treated across the two completed trials with a total of 49 catheters. The mean ± SD (range) age was 14.1 ± 3.6 (7-19) years. All tumors were grade 3 or 4 gliomas. Nonlobar catheter tip placement included the corpus callosum, thalamus, insula, and cingulate gyrus. Six of 19 patients (31.6%) had minor hemorrhage noted on CT; however, no patients were symptomatic and/or required intervention related to these findings. One of 19 patients had a delayed CSF leak after catheter removal that required oversewing of the surgical site. No patients developed infection or a neurological deficit. In 7 patients with accuracy data, the mean ± SD distance of the planned trajectory (PT) to the catheter tip was 1.57 ± 1.6 mm, the mean angle of the PT to the catheter was 2.43° ± 2.1°, and the greatest distance of PT to the catheter in the parallel plane was 1.54 ± 1.5 mm. Three of 49 (6.1%) catheters were considered misplaced. CONCLUSIONS: Although instances of minor hemorrhage were encountered, they were clinically asymptomatic. One of 49 catheters required intervention for a CSF leak. Congruent with previous studies in the literature, the stereotactic placement of catheters in these pediatric tumor patients was accurate with approximately 95% of catheters having been adequately placed.


Asunto(s)
Neoplasias Encefálicas , Recurrencia Local de Neoplasia , Niño , Humanos , Adolescente , Recurrencia Local de Neoplasia/terapia , Neoplasias Encefálicas/diagnóstico por imagen , Neoplasias Encefálicas/terapia , Catéteres , Inmunoterapia , Hemorragia
6.
Front Cell Dev Biol ; 11: 1271575, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37860820

RESUMEN

Oncolytic viral (OV) therapies are promising novel treatment modalities for cancers refractory to conventional treatment, such as glioblastoma, within the central nervous system (CNS). Although OVs have received regulatory approval for use in the CNS, efficacy is hampered by obstacles related to delivery, under-/over-active immune responses, and the "immune-cold" nature of most CNS malignancies. SUMO, the Small Ubiquitin-like Modifier, is a family of proteins that serve as a high-level regulator of a large variety of key physiologic processes including the host immune response. The SUMO pathway has also been implicated in the pathogenesis of both wild-type viruses and CNS malignancies. As such, the intersection of OV biology with the SUMO pathway makes SUMOtherapeutics particularly interesting as adjuvant therapies for the enhancement of OV efficacy alone and in concert with other immunotherapeutic agents. Accordingly, the authors herein provide: 1) an overview of the SUMO pathway and its role in CNS malignancies; 2) describe the current state of CNS-targeted OVs; and 3) describe the interplay between the SUMO pathway and the viral lifecycle and host immune response.

8.
Neurooncol Adv ; 5(1): vdad081, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37497017

RESUMEN

Adult and pediatric high-grade gliomas (HGGs) are aggressive cancers of the central nervous system that confer dismal clinical prognoses. Standard radiation and chemotherapy have demonstrated only limited efficacy in HGGs, motivating the accelerated investigation of novel modalities such as oncolytic virus (OV) therapies. OV centered therapies work through a mixed mechanism centered on oncolysis and the stimulation of an antitumor immune response. Three recent clinical trials utilizing herpes simplex virus-1 and adenovirus-based oncolytic virotherapy demonstrated not only the safety and efficacy of OVs but also novel dosing strategies that augment OV response potential. Considering these recent trials, herein we present a roadmap for future clinical trials of oncolytic immunovirotherapy in both adult and pediatric HGG, as well as persistent roadblocks related to the assessment of OV efficacy within and between trials.

10.
Life (Basel) ; 13(3)2023 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-36983757

RESUMEN

Diffuse intrinsic pontine glioma (DIPG) carries an extremely poor prognosis, with 2-year survival rates of <10% despite the maximal radiation therapy. DIPG cells have previously been shown to be sensitive to low-intensity electric fields in vitro. Accordingly, we sought to determine if the endoscopic endonasal (EE) implantation of an electrode array in the clivus would be feasible for the application of tumor-treating fields (TTF) in DIPG. Anatomic constraints are the main limitation in pediatric EE approaches. In our Boston Children's Hospital's DIPG cohort, we measured the average intercarotid distance (1.68 ± 0.36 cm), clival width (1.62 ± 0.19 cm), and clival length from the base of the sella (1.43 ± 0.69 cm). Using a linear regression model, we found that only clival length and sphenoid pneumatization were significantly associated with age (R2 = 0.568, p = 0.005 *; R2 = 0.605, p = 0.0002 *). Critically, neither of these parameters represent limitations to the implantation of a device within the dimensions of those currently available. Our findings confirm that the anatomy present within this age group is amenable to the placement of a 2 × 1 cm electrode array in 94% of patients examined. Our work serves to demonstrate the feasibility of implantable transclival devices for the provision of TTFs as a novel adjunctive therapy for DIPG.

11.
Oncotarget ; 14: 40-43, 2023 01 12.
Artículo en Inglés | MEDLINE | ID: mdl-36634220

RESUMEN

Oncolytic virotherapy with intratumoral engineered type-1 herpes simplex virus (HSV) has been proven safe with promising efficacy in recent clinical trials for treatment of both pediatric and adult high-grade glioma. However, this approach excludes patients with tumors in surgically inaccessible and/or eloquent brain regions. Current delivery methods are also unable to access/treat those patients with metastatic disease in the spinal cord and/or leptomeningeal disease. A recent preclinical study has paved the way for clinical translation of intraventricular administration of oHSV by identifying and mitigating the toxicity associated with this route for therapeutic benefit in murine models of disseminated medulloblastoma. This work may ultimately allow for targeting of intractable disease and provides a feasible option for the repetitive dosing of clinically relevant immunovirotherapy, G207.


Asunto(s)
Neoplasias Cerebelosas , Glioma , Viroterapia Oncolítica , Virus Oncolíticos , Adulto , Humanos , Niño , Ratones , Animales , Virus Oncolíticos/genética , Simplexvirus , Viroterapia Oncolítica/métodos
12.
Sci Rep ; 13(1): 1636, 2023 01 30.
Artículo en Inglés | MEDLINE | ID: mdl-36717682

RESUMEN

Increasing the intensity of tumor treating fields (TTF) within a tumor bed improves clinical efficacy, but reaching sufficiently high field intensities to achieve growth arrest remains challenging due in part to the insulating nature of the cranium. Using MRI-derived finite element models (FEMs) and simulations, we optimized an exhaustive set of intracranial electrode locations to obtain maximum TTF intensities in three clinically challenging high-grade glioma (HGG) cases (i.e., thalamic, left temporal, brainstem). Electric field strengths were converted into therapeutic enhancement ratios (TER) to evaluate the predicted impact of stimulation on tumor growth. Concurrently, conventional transcranial configurations were simulated/optimized for comparison. Optimized intracranial TTF were able to achieve field strengths that have previously been shown capable of inducing complete growth arrest, in 98-100% of the tumor volumes using only 0.54-0.64 A current. The reconceptualization of TTF as a targeted, intracranial therapy has the potential to provide a meaningful survival benefit to patients with HGG and other brain tumors, including those in surgically challenging, deep, or anatomically eloquent locations which may preclude surgical resection. Accordingly, such an approach may ultimately represent a paradigm shift in the use of TTFs for the treatment of brain cancer.


Asunto(s)
Neoplasias Encefálicas , Glioma , Humanos , Neoplasias Encefálicas/cirugía , Resultado del Tratamiento , Imagen por Resonancia Magnética
13.
Cancers (Basel) ; 14(22)2022 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-36428701

RESUMEN

Background: Posterior fossa tumors (PFTs) are a morbid group of central nervous system tumors that most often present in childhood. While early diagnosis is critical to drive appropriate treatment, definitive diagnosis is currently only achievable through invasive tissue collection and histopathological analyses. Machine learning has been investigated as an alternative means of diagnosis. In this systematic review and meta-analysis, we evaluated the primary literature to identify all machine learning algorithms developed to classify and diagnose pediatric PFTs using imaging or molecular data. Methods: Of the 433 primary papers identified in PubMed, EMBASE, and Web of Science, 25 ultimately met the inclusion criteria. The included papers were extracted for algorithm architecture, study parameters, performance, strengths, and limitations. Results: The algorithms exhibited variable performance based on sample size, classifier(s) used, and individual tumor types being investigated. Ependymoma, medulloblastoma, and pilocytic astrocytoma were the most studied tumors with algorithm accuracies ranging from 37.5% to 94.5%. A minority of studies compared the developed algorithm to a trained neuroradiologist, with three imaging-based algorithms yielding superior performance. Common algorithm and study limitations included small sample sizes, uneven representation of individual tumor types, inconsistent performance reporting, and a lack of application in the clinical environment. Conclusions: Artificial intelligence has the potential to improve the speed and accuracy of diagnosis in this field if the right algorithm is applied to the right scenario. Work is needed to standardize outcome reporting and facilitate additional trials to allow for clinical uptake.

14.
Neurooncol Adv ; 4(1): vdac131, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36225650

RESUMEN

Background: Chromosomal translocation has been detected in many human cancers including gliomas and is considered a driving force in tumorigenesis. Co-deletion of chromosome arms 1p and 19q is a hallmark for oligodendrogliomas. On the molecular level, 1p/19q co-deletion results from t(1;19)(q10;p10), which leads to the concomitant formation of a hybrid chromosome containing the 1q and 19p arms. A method to generate 1p/19q co-deletion is lacking, which hinders the investigation of how 1p/19q co-deletion contributes to gliomagenesis. Methods: We hypothesized that chromosomal translocation, such as t(1;19)(q10;p10) resulting in the 1p/19q co-deletion, may be induced by simultaneously introducing DNA double-strand breaks (DSBs) into chromosomes 1p and 19q using CRISPR/Cas9. We developed a CRISPR/Cas9-based strategy to induce t(1;19)(q10;p10) and droplet digital PCR (ddPCR) assays to detect the hybrid 1q/19p and 1p/19q chromosomes. Results: After translocation induction, we detected both 1p/19q and 1q/19p hybrid chromosomes by PCR amplification of the junction regions in HEK 293T, and U-251 and LN-229 glioblastoma cells. Sequencing analyses of the PCR products confirmed DNA sequences matching both chromosomes 1 and 19. Furthermore, the 1p/19q hybrid chromosome was rapidly lost in all tested cell lines. The 1q/19p hybrid chromosome also become undetectable over time likely due to cell survival disadvantage. Conclusion: We demonstrated that t(1;19)(q10;p10) may be induced by CRISPR/Cas9-mediated genomic editing. This method represents an important step toward engineering the 1p/19q co-deletion to model oligodendrogliomas. This method may also be generalizable to engineering other cancer-relevant translocations, which may facilitate the understanding of translocation roles in cancer progression.

15.
Clin Cancer Res ; 28(24): 5419-5430, 2022 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-36239623

RESUMEN

PURPOSE: Oncolytic virotherapy with herpes simplex virus-1 (HSV) has shown promise for the treatment of pediatric and adult brain tumors; however, completed and ongoing clinical trials have utilized intratumoral/peritumoral oncolytic HSV (oHSV) inoculation due to intraventricular/intrathecal toxicity concerns. Intratumoral delivery requires an invasive neurosurgical procedure, limits repeat injections, and precludes direct targeting of metastatic and leptomeningeal disease. To address these limitations, we determined causes of toxicity from intraventricular oHSV and established methods for mitigating toxicity to treat disseminated brain tumors in mice. EXPERIMENTAL DESIGN: HSV-sensitive CBA/J mice received intraventricular vehicle, inactivated oHSV, or treatment doses (1×107 plaque-forming units) of oHSV, and toxicity was assessed by weight loss and IHC. Protective strategies to reduce oHSV toxicity, including intraventricular low-dose oHSV or interferon inducer polyinosinic-polycytidylic acid (poly I:C) prior to oHSV treatment dose, were evaluated and then utilized to assess intraventricular oHSV treatment of multiple models of disseminated CNS disease. RESULTS: A standard treatment dose of intraventricular oHSV damaged ependymal cells via virus replication and induction of CD8+ T cells, whereas vehicle or inactivated virus resulted in no toxicity. Subsequent doses of intraventricular oHSV caused little additional toxicity. Interferon induction with phosphorylation of eukaryotic initiation factor-2α (eIF2α) via intraventricular pretreatment with low-dose oHSV or poly I:C mitigated ependyma toxicity. This approach enabled the safe delivery of multiple treatment doses of clinically relevant oHSV G207 and prolonged survival in disseminated brain tumor models. CONCLUSIONS: Toxicity from intraventricular oHSV can be mitigated, resulting in therapeutic benefit. These data support the clinical translation of intraventricular G207.


Asunto(s)
Neoplasias Encefálicas , Herpesvirus Humano 1 , Viroterapia Oncolítica , Virus Oncolíticos , Ratones , Animales , Herpesvirus Humano 1/genética , Virus Oncolíticos/genética , Línea Celular Tumoral , Ratones Endogámicos CBA , Viroterapia Oncolítica/efectos adversos , Viroterapia Oncolítica/métodos , Neoplasias Encefálicas/patología , Poli I
16.
Oncoimmunology ; 11(1): 2124058, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36185807

RESUMEN

Diffuse midline gliomas (DMG) are a highly aggressive and universally fatal subgroup of pediatric tumors responsible for the majority of childhood brain tumor deaths. Median overall survival is less than 12 months with a 90% mortality rate at 2 years from diagnosis. Research into the underlying tumor biology and numerous clinical trials have done little to change the invariably poor prognosis. Continued development of novel, efficacious therapeutic options for DMGs remains a critically important area of active investigation. Given that DMGs are not amenable to surgical resection, have only limited response to radiation, and are refractory to traditional chemotherapy, immunotherapy has emerged as a promising alternative treatment modality. This review summarizes the various immunotherapy-based treatments for DMG as well as their specific limitations. We explore the use of cell-based therapies, oncolytic virotherapy or immunovirotherapy, immune checkpoint inhibition, and immunomodulatory vaccination strategies, and highlight the recent clinical success of anti-GD2 CAR-T therapy in diffuse intrinsic pontine glioma (DIPG) patients. Finally, we address the challenges faced in translating preclinical and early phase clinical trial data into effective standardized treatment for DMG patients.


Asunto(s)
Neoplasias del Tronco Encefálico , Glioma , Receptores Quiméricos de Antígenos , Neoplasias del Tronco Encefálico/tratamiento farmacológico , Neoplasias del Tronco Encefálico/patología , Niño , Glioma/terapia , Humanos , Inhibidores de Puntos de Control Inmunológico , Inmunoterapia
17.
Neurooncol Adv ; 4(1): vdac080, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35821676

RESUMEN

Glioblastoma (GBM) is the most common primary adult intracranial malignancy and carries a dismal prognosis despite an aggressive multimodal treatment regimen that consists of surgical resection, radiation, and adjuvant chemotherapy. Radiographic evaluation, largely informed by magnetic resonance imaging (MRI), is a critical component of initial diagnosis, surgical planning, and post-treatment monitoring. However, conventional MRI does not provide information regarding tumor microvasculature, necrosis, or neoangiogenesis. In addition, traditional MRI imaging can be further confounded by treatment-related effects such as pseudoprogression, radiation necrosis, and/or pseudoresponse(s) that preclude clinicians from making fully informed decisions when structuring a therapeutic approach. A myriad of novel imaging modalities have been developed to address these deficits. Herein, we provide a clinically oriented review of standard techniques for imaging GBM and highlight emerging technologies utilized in disease characterization and therapeutic development.

18.
Cancers (Basel) ; 14(9)2022 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-35565467

RESUMEN

Under cellular distress, multiple facets of normal homeostatic signaling are altered or disrupted. In the context of the immune landscape, external and internal stressors normally promote the expression of natural killer group 2 member D (NKG2D) ligands that allow for the targeted recognition and killing of cells by NKG2D receptor-bearing effector populations. The presence or absence of NKG2D ligands can heavily influence disease progression and impact the accessibility of immunotherapy options. In cancer, tumor cells are known to have distinct regulatory mechanisms for NKG2D ligands that are directly associated with tumor progression and maintenance. Therefore, understanding the regulation of NKG2D ligands in cancer will allow for targeted therapeutic endeavors aimed at exploiting the stress response pathway. In this review, we summarize the current understanding of regulatory mechanisms controlling the induction and repression of NKG2D ligands in cancer. Additionally, we highlight current therapeutic endeavors targeting NKG2D ligand expression and offer our perspective on considerations to further enhance the field of NKG2D ligand biology.

19.
Neuro Oncol ; 24(11): 1964-1975, 2022 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-35397478

RESUMEN

BACKGROUND: The prognosis for patients with pediatric high-grade glioma (pHGG) is poor despite aggressive multimodal therapy. Objective responses to targeted therapy with BRAF inhibitors have been reported in some patients with recurrent BRAF-mutant pHGG but are rarely sustained. METHODS: We performed a retrospective, multi-institutional review of patients with BRAF-mutant pHGG treated with off-label BRAF +/- MEK inhibitors as part of their initial therapy. RESULTS: Nineteen patients were identified, with a median age of 11.7 years (range, 2.3-21.4). Histologic diagnoses included HGG (n = 6), glioblastoma (n = 3), anaplastic ganglioglioma (n = 4), diffuse midline glioma (n = 3), high-grade neuroepithelial tumor (n = 1), anaplastic astrocytoma (n = 1), and anaplastic astroblastoma (n = 1). Recurrent concomitant oncogenic alterations included CDKN2A/B loss, H3 K27M, as well as mutations in ATRX, EGFR, and TERT. Eight patients received BRAF inhibitor monotherapy. Eleven patients received combination therapy with BRAF and MEK inhibitors. Most patients tolerated long-term treatment well with no grade 4-5 toxicities. Objective and durable imaging responses were seen in the majority of patients with measurable disease. At a median follow-up of 2.3 years (range, 0.3-6.5), three-year progression-free and overall survival for the cohort were 65% and 82%, respectively, and superior to a historical control cohort of BRAF-mutant pHGG patients treated with conventional therapies. CONCLUSIONS: Upfront targeted therapy for patients with BRAF-mutant pHGG is feasible and effective, with superior clinical outcomes compared to historical data. This promising treatment paradigm is currently being evaluated prospectively in the Children's Oncology Group ACNS1723 clinical trial.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Glioma , Niño , Humanos , Preescolar , Adolescente , Adulto Joven , Adulto , Proteínas Proto-Oncogénicas B-raf/genética , Neoplasias Encefálicas/patología , Terapia Molecular Dirigida , Estudios Retrospectivos , Glioma/patología , Mutación , Inhibidores de Proteínas Quinasas/uso terapéutico , Glioblastoma/tratamiento farmacológico , Quinasas de Proteína Quinasa Activadas por Mitógenos
20.
Oncogene ; 41(19): 2663-2671, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35430605

RESUMEN

Brain tumors result in significant morbidity and mortality in both children and adults. Recent data indicate that immunotherapies may offer a survival benefit after standard of care has failed for malignant brain tumors. Modest results from several late phase clinical trials, however, underscore the need for more refined, comprehensive strategies that incorporate new mechanistic and pharmacologic knowledge. Recently, oncometabolism has emerged as an adjunct modality for combinatorial treatment approaches necessitated by the aggressive, refractory nature of high-grade glioma and other progressive malignant brain tumors. Manipulation of metabolic processes in cancer and immune cells that comprise the tumor microenvironment through controlled targeting of oncogenic pathways may be utilized to maximize the efficacy of immunotherapy and improve patient outcomes. Herein, we summarize preclinical and early phase clinical trial research of oncometabolism-based therapeutics that may augment immunotherapy by exploiting the biochemical and genetic underpinnings of brain tumors. We also examine metabolic pathways related to immune cells that target tumor cells, termed "tumor immunometabolism". Specifically, we focus on glycolysis and altered glucose metabolism, including glucose transporters, hexokinase, pyruvate dehydrogenase, and lactate dehydrogenase, glutamine, and we discuss targeting arginase, adenosine, and indoleamine 2,3-dioxygenase, and toll-like receptors. Lastly, we summarize future directions targeting metabolism in combination with emerging therapies such as oncolytic virotherapy, vaccines, and chimeric antigen receptor T cells.


Asunto(s)
Neoplasias Encefálicas , Glioma , Viroterapia Oncolítica , Adulto , Neoplasias Encefálicas/genética , Niño , Glioma/terapia , Humanos , Inmunoterapia/métodos , Viroterapia Oncolítica/métodos , Microambiente Tumoral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...