Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Respir Med ; 222: 107506, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38151176

RESUMEN

BACKGROUND: Chronic obstructive pulmonary disease (COPD) is one of the leading causes of morbidity and mortality. Here we present a large observational study on the association of COPD and exacerbations with mortality (AvoidEx Mortality). METHODS: A real-world, observational cohort study with longitudinal analyses of German healthcare claims data in patients ≥40 years of age with a COPD diagnosis from 2011 to 2018 (n = 250,723) was conducted. Patients entered the cohort (index date) upon the first COPD diagnosis. To assess the impact of COPD on all-cause death, a propensity score-matched control group of non-COPD patients was constructed. The number and severity of exacerbations during a 12-month pre-index period were used to form subgroups. For each exacerbation subgroup the exacerbations during 12 months prior to death were analysed. RESULTS: COPD increases the all-cause mortality risk by almost 60% (HR 1.57 (95% CI 1.55-1.59)) in comparison to matched non-COPD controls, when controlling for other baseline covariates. The cumulative risk of death after 8 years was highest in patients with a history of more than one moderate or severe exacerbation. Among all deceased COPD patients, 17.2% had experienced a severe, and 34.8% a moderate exacerbation, within 3 months preceding death. Despite increasing exacerbation rates towards death, more than the half of patients were not receiving any recommended pharmacological COPD therapy in the year before death. CONCLUSION: Our study illustrates the impact of COPD on mortality risk and highlights the need for consequent COPD management comprising exacerbation assessment and treatment.


Asunto(s)
Enfermedad Pulmonar Obstructiva Crónica , Adulto , Humanos , Estudios de Cohortes , Atención a la Salud , Progresión de la Enfermedad , Enfermedad Pulmonar Obstructiva Crónica/tratamiento farmacológico , Estudios Retrospectivos , Persona de Mediana Edad
3.
Int J Chron Obstruct Pulmon Dis ; 16: 2407-2417, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34465988

RESUMEN

Background: Recent studies evaluating the predictive value of different variables on future exacerbations suggest exacerbation history as the strongest predictor. We examined the effect of exacerbation history on subsequent events in a large sample population with over 250,000 COPD patients using up to 8 years of longitudinal healthcare data from Germany. Methods: Patients 40 years or older with any COPD diagnosis in primary or secondary care were included from 2011 to 2017 (index period) from healthcare insurance claims (Germany; WIG2 research database), with 12 months before index date as baseline and at least 12-month follow-up. Exacerbations during baseline were defined as moderate (treatment with oral corticosteroids or antibiotics, J01AA, J01CA) or severe (emergency visit or hospitalization). Results: Patients without (category A), with one moderate (category B), or with either one severe or several baseline exacerbations (category C) experienced an average of 0.9 (CI 0.9-0.9), 1.9 (CI 1.9-1.9), and 6.3 (CI 6.1-6.3) exacerbations during the first 3 years of follow-up, respectively. By 8 years, 87.0% (CI 86.6-87.4), 70.5% (CI 69.9-71.0) and 49.1% (CI 48.9-49.3) of category C, B and A patients had experienced a subsequent exacerbation. Conclusion: Baseline exacerbations increased the likelihood of, and reduced time to subsequent exacerbations. Even patients without baseline exacerbations experienced exacerbations within three years, emphasizing the importance of adequate treatment in patients with less severe disease presentation as well.


Asunto(s)
Enfermedad Pulmonar Obstructiva Crónica , Progresión de la Enfermedad , Alemania , Hospitalización , Humanos , Enfermedad Pulmonar Obstructiva Crónica/diagnóstico , Enfermedad Pulmonar Obstructiva Crónica/tratamiento farmacológico , Enfermedad Pulmonar Obstructiva Crónica/epidemiología , Estudios Retrospectivos
4.
Eur J Pharmacol ; 904: 174170, 2021 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-33984298

RESUMEN

Diastolic dysfunction is a major feature of hypertrophic cardiomyopathy (HCM). Data from patient tissue and animal models associate increased Ca2+ sensitivity of myofilaments with altered Na+ and Ca2+ ion homeostasis in cardiomyocytes with diastolic dysfunction. In this study, we tested the acute effects of ouabain on ventricular myocytes of an HCM mouse model. The effects of ouabain on contractility and Ca2+ transients were tested in intact adult mouse ventricular myocytes (AMVMs) of Mybpc3-targeted knock-in (KI) and wild-type (WT) mice. Concentration-response assessment of contractile function revealed low sensitivity of AMVMs to ouabain (10 µM) compared to literature data on human cardiomyocytes (100 nM). Three hundred µM ouabain increased contraction amplitude (WT ~1.8-fold; KI ~1.5-fold) and diastolic intracellular Ca2+ in both WT and KI (+12-18%), but further decreased diastolic sarcomere length in KI cardiomyocytes (-5%). Western Blot analysis of whole heart protein extracts revealed 50% lower amounts of Na+/K+ ATPase (NKA) in KI than in WT. Ouabain worsened the diastolic phenotype of KI cardiomyocytes at concentrations which did not impair WT diastolic function. Ouabain led to an elevation of intracellular Ca2+, which was poorly tolerated in KI showing already high cytosolic Ca2+ at baseline due to increased myofilament Ca2+ sensitivity. Lower amounts of NKA in KI could amplify the need to exchange excessive intracellular Na+ for Ca2+ and thereby explain the general tendency to higher diastolic Ca2+ in KI.


Asunto(s)
Cardiomiopatía Hipertrófica/genética , Cardiomiopatía Hipertrófica/metabolismo , Diástole/efectos de los fármacos , Inhibidores Enzimáticos/toxicidad , Miocitos Cardíacos/efectos de los fármacos , Ouabaína/toxicidad , Sarcómeros/efectos de los fármacos , Animales , Calcio/metabolismo , Proteínas Portadoras/genética , Modelos Animales de Enfermedad , Técnicas de Sustitución del Gen , Ratones , Contracción Miocárdica/efectos de los fármacos , ATPasa Intercambiadora de Sodio-Potasio/antagonistas & inhibidores , ATPasa Intercambiadora de Sodio-Potasio/metabolismo , Sístole/efectos de los fármacos
5.
Redox Biol ; 41: 101951, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33831709

RESUMEN

Sulforaphane (SFN) is a phytochemical compound extracted from cruciferous plants, like broccoli or cauliflower. Its isothiocyanate group renders SFN reactive, thus allowing post-translational modification of cellular proteins to regulate their function with the potential for biological and therapeutic actions. SFN and stabilized variants recently received regulatory approval for clinical studies in humans for the treatment of neurological disorders and cancer. Potential unwanted side effects of SFN on heart function have not been investigated yet. The present study characterizes the impact of SFN on cardiomyocyte contractile function in cardiac preparations from neonatal rat, adult mouse and human induced-pluripotent stem cell-derived cardiomyocytes. This revealed a SFN-mediated negative inotropic effect, when administered either acutely or chronically, with an impairment of the Frank-Starling response to stretch activation. A direct effect of SFN on myofilament function was excluded in chemically permeabilized mouse trabeculae. However, SFN pretreatment increased lactate formation and enhanced the mitochondrial production of reactive oxygen species accompanied by a significant reduction in the mitochondrial membrane potential. Transmission electron microscopy revealed disturbed sarcomeric organization and inflated mitochondria with whorled membrane shape in response to SFN exposure. Interestingly, administration of the alternative energy source l-glutamine to the medium that bypasses the uptake route of pyruvate into the mitochondrial tricarboxylic acid cycle improved force development in SFN-treated EHTs, suggesting indeed mitochondrial dysfunction as a contributor of SFN-mediated contractile dysfunction. Taken together, the data from the present study suggest that SFN might impact negatively on cardiac contractility in patients with cardiovascular co-morbidities undergoing SFN supplementation therapy. Therefore, cardiac function should be monitored regularly to avoid the onset of cardiotoxic side effects.


Asunto(s)
Apoptosis , Isotiocianatos , Animales , Humanos , Ratones , Mitocondrias , Ratas , Especies Reactivas de Oxígeno , Sulfóxidos
6.
Int J Chron Obstruct Pulmon Dis ; 15: 1335-1347, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32606643

RESUMEN

Background: LABA (long-acting ß2-agonists) and/or LAMA (long-acting muscarinic antagonists) represent the first treatment options for patients with symptomatic COPD. Although both display different mechanisms of activity, in combination they have a stronger broncho-dilating effect than monotherapy; hence, a combination of both LABA and LAMA is particularly recommended for patients whose symptoms cannot be sufficiently improved by a single active ingredient. To date, only few data have been collected regarding the therapeutic outcomes of approved LABA/LAMA fixed-dose combinations (FDCs) under everyday (real-life) conditions in non-clinical trial settings. Objective and Methods: The main objective of the DETECT study was to investigate the impact of aclidinium/formoterol (AB/FF, b.i.d.), glycopyrronium/indacaterol (GLY/IND, q.d.) and umeclidinium/vilanterol (UME/VL, q.d.) in patients with COPD in daily clinical practice. Therefore, a prospective, non-randomized, 12-month, observational study was implemented to assess the effectiveness of these treatments in patients who had been switched to FDC within the last 3 months or for whom such a changeover was intended. Changes in lung function were analyzed by the forced expiratory volume (FEV1) and forced vital capacity (FVC) measures. Quality of life and well-being were evaluated by the COPD Assessment Test (CAT™). Furthermore, a number of exacerbations and early morning COPD symptoms were documented. Results: In total, 3653 patients were enrolled. FEV1 and FVC values significantly improved during the study with AB/FF (increase by 0.09 ± 0.40 L and 0.10 ± 0.57 L, respectively; p<0.0001), GLY/IND (0.06±0.38/0.05±0.51 L; p<0.0001 and p=0.0025) and UME/VL (0.12±0.39/0.10±0.52 L; p<0.0001). CAT scores decreased indicating improved COPD (AB/FF, 4.17±8.30; GLY/IND, 3.66±7.88; UME/VL, 4.06±7.96; p<0.0001). Moreover, the number of exacerbations as well as early morning COPD symptoms similarly diminished in all treatment groups. A comparable proportion of patients with adverse drug reactions was recorded: AB/FF, 4.07% of patients; GLY/IND, 3.52%; UME/VL, 3.64%. Conclusion: In summary, AB/FF, GLY/IND and UME/VL provided clinical benefits in lung function, quality of life and early morning COPD symptoms in a broad cohort of COPD patients under routine medical practice conditions. All three treatments were well tolerated.


Asunto(s)
Glicopirrolato , Enfermedad Pulmonar Obstructiva Crónica , Administración por Inhalación , Agonistas de Receptores Adrenérgicos beta 2/uso terapéutico , Alcoholes Bencílicos , Broncodilatadores/uso terapéutico , Clorobencenos , Combinación de Medicamentos , Fumarato de Formoterol/uso terapéutico , Glicopirrolato/uso terapéutico , Humanos , Indanos , Antagonistas Muscarínicos/uso terapéutico , Estudios Prospectivos , Enfermedad Pulmonar Obstructiva Crónica/diagnóstico , Enfermedad Pulmonar Obstructiva Crónica/tratamiento farmacológico , Calidad de Vida , Quinolonas , Quinuclidinas , Resultado del Tratamiento
7.
Sci Rep ; 9(1): 18152, 2019 12 03.
Artículo en Inglés | MEDLINE | ID: mdl-31796859

RESUMEN

Phosphorylation of cardiac myosin-binding protein C (cMyBP-C), encoded by MYBPC3, increases the availability of myosin heads for interaction with actin thus enhancing contraction. cMyBP-C phosphorylation level is lower in septal myectomies of patients with hypertrophic cardiomyopathy (HCM) than in non-failing hearts. Here we compared the effect of phosphomimetic (D282) and wild-type (S282) cMyBP-C gene transfer on the HCM phenotype of engineered heart tissues (EHTs) generated from a mouse model carrying a Mybpc3 mutation (KI). KI EHTs showed lower levels of mutant Mybpc3 mRNA and protein, and altered gene expression compared with wild-type (WT) EHTs. Furthermore, KI EHTs exhibited faster spontaneous contractions and higher maximal force and sensitivity to external [Ca2+] under pacing. Adeno-associated virus-mediated gene transfer of D282 and S282 similarly restored Mybpc3 mRNA and protein levels and suppressed mutant Mybpc3 transcripts. Moreover, both exogenous cMyBP-C proteins were properly incorporated in the sarcomere. KI EHTs hypercontractility was similarly prevented by both treatments, but S282 had a stronger effect than D282 to normalize the force-Ca2+-relationship and the expression of dysregulated genes. These findings in an in vitro model indicate that S282 is a better choice than D282 to restore the HCM EHT phenotype. To which extent the results apply to human HCM remains to be seen.


Asunto(s)
Cardiomiopatía Hipertrófica/metabolismo , Proteínas Portadoras/metabolismo , Miocardio/metabolismo , Animales , Calcio/metabolismo , Proteínas Portadoras/genética , Corazón , Ratones , Mutación/genética , Contracción Miocárdica/fisiología , Miocitos Cardíacos/metabolismo , Fenotipo , ARN Mensajero/metabolismo , Sarcómeros/metabolismo , Ingeniería de Tejidos/métodos
8.
EMBO Mol Med ; 11(12): e11115, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31680489

RESUMEN

Hypertrophic cardiomyopathy (HCM) is a cardiac genetic disease accompanied by structural and contractile alterations. We identified a rare c.740C>T (p.T247M) mutation in ACTN2, encoding α-actinin 2 in a HCM patient, who presented with left ventricular hypertrophy, outflow tract obstruction, and atrial fibrillation. We generated patient-derived human-induced pluripotent stem cells (hiPSCs) and show that hiPSC-derived cardiomyocytes and engineered heart tissues recapitulated several hallmarks of HCM, such as hypertrophy, myofibrillar disarray, hypercontractility, impaired relaxation, and higher myofilament Ca2+ sensitivity, and also prolonged action potential duration and enhanced L-type Ca2+ current. The L-type Ca2+ channel blocker diltiazem reduced force amplitude, relaxation, and action potential duration to a greater extent in HCM than in isogenic control. We translated our findings to patient care and showed that diltiazem application ameliorated the prolonged QTc interval in HCM-affected son and sister of the index patient. These data provide evidence for this ACTN2 mutation to be disease-causing in cardiomyocytes, guiding clinical therapy in this HCM family. This study may serve as a proof-of-principle for the use of hiPSC for personalized treatment of cardiomyopathies.


Asunto(s)
Actinina/genética , Cardiomiopatía Hipertrófica/genética , Animales , Modelos Animales de Enfermedad , Humanos , Síndrome de QT Prolongado/genética , Mutación , Medicina de Precisión
9.
Sci Rep ; 9(1): 5708, 2019 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-30952941

RESUMEN

The purpose of the present study was to assess whether 6-week ranolazine application on top of guideline-based treatment impacts on the arginine/NO pathway and urinary isoprostane 8-iso-PGF2α as marker of oxidative stress in patients directly after a myocardial infarction. 20 patients with unstable angina pectoris and proof of acute cardiac ischemia entered the study. 10 subjects received the study drug ranolazine in addition to standard treatment, the others received only standard treatment. Urine and venous blood were collected before and after treatment. At the end of the study and compared to baseline, homoarginine levels had increased in the control group. This was not the case in ranolazine-patients. Interestingly, in ranolazine-treated-patients arginine plasma levels were significantly higher at the end of the study than at baseline (difference +26 µmol/L, 95% CI 8.6 to 44 µmol/L). ADMA and SDMA levels were not different. Urine levels of the oxidative stress marker 8-iso-PGF2α tended to be lower in ranolazine-treated patients (-144 pmol/mg creatinine). Findings of this hypothesis-driven study give evidence that ranolazine treatment enhances arginine plasma levels and lowers oxidative stress.


Asunto(s)
Arginina/sangre , Dinoprost/análogos & derivados , Homoarginina/sangre , Infarto del Miocardio/tratamiento farmacológico , Ranolazina/uso terapéutico , Anciano , Anciano de 80 o más Años , Angina Inestable/sangre , Angina Inestable/tratamiento farmacológico , Angina Inestable/orina , Biomarcadores/sangre , Biomarcadores/orina , Fármacos Cardiovasculares/farmacología , Fármacos Cardiovasculares/uso terapéutico , Dinoprost/orina , Femenino , Humanos , Masculino , Persona de Mediana Edad , Infarto del Miocardio/sangre , Infarto del Miocardio/orina , Isquemia Miocárdica/sangre , Isquemia Miocárdica/tratamiento farmacológico , Isquemia Miocárdica/orina , Estrés Oxidativo , Ranolazina/farmacología
11.
J Cardiovasc Pharmacol Ther ; 24(1): 62-69, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-29938533

RESUMEN

BACKGROUND: Coronary artery disease is the most prevalent manifestation among cardiovascular diseases. Despite modern treatment, risk of ischemic complications in patients with acute coronary syndrome (ACS) remains important. The late Na+ current blocker ranolazine has shown to reduce the risk of recurrent ischemia and worsening of angina in patients with non-ST-segment elevation ACS by possibly improving myocardial perfusion, but up to now no trial has addressed whether this enhanced perfusion also leads to a decrease in ischemic myocardium of patients with ACS. We designed a pilot trial (Reduction of Ischemic Myocardium with Ranolazine-Treatment IN patients with acute myocardial Infarction, ClinicalTrials.gov Identifier: NCT01797484) for feasibility and proof of concept that a 6-week ranolazine add-on therapy would reduce the area of ischemic myocardium in patients with ACS. METHODS AND RESULTS: The trial was designed in a 2-armed, controlled and randomized way. Twenty participants with unstable angina, proof of acute cardiac ischemia, and myocardial dyskinesia by speckle-tracking echocardiography were included. Ten participants received the study drug ranolazine additionally to standard treatment. The control group received standard treatment without additional study medication. Speckle-tracking echocardiography was performed before coronary intervention, before the first dose of ranolazine, and after 6 weeks of ranolazine treatment. Ranolazine was administered safely during acute myocardial infarction. Speckle-tracking echocardiography proved to be suitable for evaluation of myocardial dyskinesia. Patients receiving ranolazine showed a trend to higher normal fraction of the cumulative global strain than patients in the standard treatment group (15% vs 11%). No major complications relating study medication were observed. CONCLUSION: In conclusion, in this preliminary hypothesis-driven study, 6-week ranolazine therapy was shown to decrease the area of dyskinetic myocardium in patients with ACS by trend. Global strain rate measurement using speckle-tracking echocardiography can be applied measuring those effects and is, compared to other techniques, safe and harmless. Our data provide a sound basis for a follow-up trial.


Asunto(s)
Angina Inestable/tratamiento farmacológico , Circulación Coronaria/efectos de los fármacos , Infarto del Miocardio/tratamiento farmacológico , Ranolazina/uso terapéutico , Bloqueadores de los Canales de Sodio/uso terapéutico , Función Ventricular Izquierda/efectos de los fármacos , Adulto , Anciano , Angina Inestable/diagnóstico por imagen , Angina Inestable/fisiopatología , Estudios de Factibilidad , Femenino , Humanos , Masculino , Persona de Mediana Edad , Infarto del Miocardio/diagnóstico por imagen , Infarto del Miocardio/fisiopatología , Proyectos Piloto , Prueba de Estudio Conceptual , Ranolazina/efectos adversos , Recuperación de la Función , Bloqueadores de los Canales de Sodio/efectos adversos , Factores de Tiempo , Resultado del Tratamiento
12.
Front Physiol ; 9: 1292, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30283351

RESUMEN

Background: S100A4 has recently emerged as an important player in cardiac disease, affecting phenotype development in animal models of myocardial infarction and pathological cardiac hypertrophy, albeit it is unclear whether S100A4 exerts a detrimental or beneficial function. The goal of the current study was to analyze S100A4 expression in models of cardiac pathology, investigate its degradation by the ubiquitin-proteasome system (UPS), and furthermore examine the functional effects of S100A4 levels in a 3D model of engineered heart tissue (EHT). Methods and Results: S100A4 mRNA and protein levels were analyzed in different models of cardiac pathology via quantitative RT-PCR and Western blot, showing a higher S100A4 steady-state protein concentration in hearts of Mybpc3-knock-in (KI) hypertrophic cardiomyopathy (HCM) mice. COS-7 cells co-transfected with plasmids encoding mutant (MUT) Asb2ß lacking the E3 ligase activity in combination with V5-tagged S100A4 plasmid presented higher S100A4-V5 protein steady-state concentrations than cells co-transfected with the Asb2ß wild type (WT) plasmid. This effect was blunted by treatment with the specific proteasome inhibitor epoxomicin. Adeno-associated virus serotype 6 (AAV6)-mediated S100A4 overexpression in a 3D model of EHT did not affect contractile parameters. Immunofluorescence analysis showed a cytosolic and partly nuclear expression pattern of S100A4. Gene expression analysis in EHTs overexpressing S100A4-V5 showed markedly lower steady-state concentrations of genes involved in cardiac fibrosis and pathological cardiac hypertrophy. Conclusion: We showed that S100A4 protein level is higher in cardiac tissue of Mybpc3-KI HCM mice probably as a result of a lower degradation by the E3 ligase Asb2ß. While an overexpression of S100A4 did not alter contractile parameters in EHTs, downstream gene expression analysis points toward modulation of signaling cascades involved in fibrosis and hypertrophy.

13.
Front Physiol ; 8: 558, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28824454

RESUMEN

Background: Hypertrophic cardiomyopathy (HCM) patients often present with diastolic dysfunction and a normal to supranormal systolic function. To counteract this hypercontractility, guideline therapies advocate treatment with beta-adrenoceptor and Ca2+ channel blockers. One well established pathomechanism for the hypercontractile phenotype frequently observed in HCM patients and several HCM mouse models is an increased myofilament Ca2+ sensitivity. Nebivolol, a commonly used beta-adrenoceptor antagonist, has been reported to lower maximal force development and myofilament Ca2+ sensitivity in rabbit and human heart tissues. The aim of this study was to evaluate the effect of nebivolol in cardiac muscle strips of an established HCM Mybpc3 mouse model. Furthermore, we investigated actions of nebivolol and epigallocatechin-gallate, which has been shown to desensitize myofilaments for Ca2+ in mouse and human HCM models, in cardiac strips of HCM patients with a mutation in the most frequently mutated HCM gene MYBPC3. Methods and Results: Nebivolol effects were tested on contractile parameters and force-Ca2+ relationship of skinned ventricular muscle strips isolated from Mybpc3-targeted knock-in (KI), wild-type (WT) mice and cardiac strips of three HCM patients with MYBPC3 mutations. At baseline, KI strips showed no difference in maximal force development compared to WT mouse heart strips. Neither 1 nor 10 µM nebivolol had an effect on maximal force development in both genotypes. 10 µM nebivolol induced myofilament Ca2+ desensitization in WT strips and to a greater extent in KI strips. Neither 1 nor 10 µM nebivolol had an effect on Ca2+ sensitivity in cardiac muscle strips of three HCM patients with MYBPC3 mutations, whereas epigallocatechin-gallate induced a right shift in the force-Ca2+ curve. Conclusion: Nebivolol induced a myofilament Ca2+ desensitization in both WT and KI strips, which was more pronounced in KI muscle strips. In human cardiac muscle strips of three HCM patients nebivolol had no effect on myofilament Ca2+ sensitivity.

14.
J Physiol ; 595(12): 3987-3999, 2017 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-28090637

RESUMEN

KEY POINTS: Hypertrophic cardiomyopathy (HCM) is the most common inherited cardiac illness and can lead to diastolic dysfunction, sudden cardiac death and heart failure. Treatment of HCM patients is empirical and current pharmacological treatments are unable to stop disease progression or reverse hypertrophy. In this study, we tested if the non-dihydropyridine Ca2+ channel blocker diltiazem, which previously showed potential to stop disease progression, can improve the phenotype of a HCM mouse model (Mybpc3-targeted knock-in), which is based on a mutation commonly found in patients. Diltiazem improved contractile function of isolated ventricular cardiomyocytes acutely, but chronic application did not improve the phenotype of adult mice with a fully developed HCM. Our study shows that diltiazem has beneficial effects in HCM, but long-term treatment success is likely to depend on characteristics and cause of HCM and onset of treatment. ABSTRACT: Left ventricular hypertrophy, diastolic dysfunction and fibrosis are the main features of hypertrophic cardiomyopathy (HCM). Guidelines recommend ß-adrenoceptor or Ca2+ channel antagonists as pharmacological treatment. The Ca2+ channel blocker diltiazem recently showed promising beneficial effects in pre-clinical HCM, particularly in patients carrying MYBPC3 mutations. In the present study we evaluated whether diltiazem could ameliorate or reverse the disease phenotype in cells and in vivo in an Mybpc3-targeted knock-in (KI) mouse model of HCM. Sarcomere shortening and Ca2+ transients were measured in KI and wild-type (WT) cardiomyocytes in basal conditions (1-Hz pacing) and under stress conditions (30 nm isoprenaline, 5-Hz pacing) with or without pre-treatment with 1 µm diltiazem. KI cardiomyocytes exhibited lower diastolic sarcomere length (dSL) at baseline, a tendency to a stronger positive inotropic response to isoprenaline than WT, a marked reduction of dSL and a tendency towards arrhythmias under stress conditions. Pre-treatment of cardiomyocytes with 1 µm diltiazem reduced the drop in dSL and arrhythmia frequency in KI, and attenuated the positive inotropic effect of isoprenaline. Furthermore, diltiazem reduced the contraction amplitude at 5 Hz but did not affect diastolic Ca2+ load and Ca2+ transient amplitude. Six months of diltiazem treatment of KI mice did not reverse cardiac hypertrophy and dysfunction, activation of the fetal gene program or fibrosis. In conclusion, diltiazem blunted the response to isoprenaline in WT and KI cardiomyocytes and improved diastolic relaxation under stress conditions in KI cardiomyocytes. This beneficial effect of diltiazem in cells did not translate in therapeutic efficacy when applied chronically in KI mice.


Asunto(s)
Cardiomiopatía Hipertrófica/metabolismo , Proteínas Portadoras/metabolismo , Diltiazem/farmacología , Contracción Miocárdica/efectos de los fármacos , Miocitos Cardíacos/efectos de los fármacos , Animales , Calcio/metabolismo , Diástole/efectos de los fármacos , Ventrículos Cardíacos/efectos de los fármacos , Ventrículos Cardíacos/metabolismo , Isoproterenol/farmacología , Ratones , Mutación/genética , Miocardio/metabolismo , Miocitos Cardíacos/metabolismo , Fenotipo , Sarcómeros/efectos de los fármacos , Sarcómeros/metabolismo
15.
Front Physiol ; 7: 607, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27994558

RESUMEN

Background: Hypertrophic cardiomyopathy (HCM) is the most common inherited cardiac muscle disease with left ventricular hypertrophy, interstitial fibrosis and diastolic dysfunction. Increased myofilament Ca2+ sensitivity could be the underlying cause of diastolic dysfunction. Epigallocatechin-3-gallate (EGCg), a catechin found in green tea, has been reported to decrease myofilament Ca2+ sensitivity in HCM models with troponin mutations. However, whether this is also the case for HCM-associated thick filament mutations is not known. Therefore, we evaluated whether EGCg affects the behavior of cardiomyocytes and myofilaments of an HCM mouse model carrying a gene mutation in cardiac myosin-binding protein C and exhibiting both increased myofilament Ca2+ sensitivity and diastolic dysfunction. Methods and Results: Acute effects of EGCg were tested on fractional sarcomere shortening and Ca2+ transients in intact ventricular myocytes and on force-Ca2+ relationship of skinned ventricular muscle strips isolated from Mybpc3-targeted knock-in (KI) and wild-type (WT) mice. Fractional sarcomere shortening and Ca2+ transients were analyzed at 37°C under 1-Hz pacing in the absence or presence of EGCg (1.8 µM). At baseline and in the absence of Fura-2, KI cardiomyocytes displayed lower diastolic sarcomere length, higher fractional sarcomere shortening, longer time to peak shortening and time to 50% relengthening than WT cardiomyocytes. In WT and KI neither diastolic sarcomere length nor fractional sarcomere shortening were influenced by EGCg treatment, but relaxation time was reduced, to a greater extent in KI cells. EGCg shortened time to peak Ca2+ and Ca2+ transient decay in Fura-2-loaded WT and KI cardiomyocytes. EGCg did not influence phosphorylation of phospholamban. In skinned cardiac muscle strips, EGCg (30 µM) decreased Ca2+ sensitivity in both groups. Conclusion: EGCg hastened relaxation and Ca2+ transient decay to a larger extent in KI than in WT cardiomyocytes. This effect could be partially explained by myofilament Ca2+ desensitization.

16.
J Mol Cell Cardiol ; 97: 82-92, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27108529

RESUMEN

Hypertrophic cardiomyopathy (HCM) is a cardiac genetic disease characterized by left ventricular hypertrophy, diastolic dysfunction and myocardial disarray. The most frequently mutated gene is MYBPC3, encoding cardiac myosin-binding protein-C (cMyBP-C). We compared the pathomechanisms of a truncating mutation (c.2373_2374insG) and a missense mutation (c.1591G>C) in MYBPC3 in engineered heart tissue (EHT). EHTs enable to study the direct effects of mutants without interference of secondary disease-related changes. EHTs were generated from Mybpc3-targeted knock-out (KO) and wild-type (WT) mouse cardiac cells. MYBPC3 WT and mutants were expressed in KO EHTs via adeno-associated virus. KO EHTs displayed higher maximal force and sensitivity to external [Ca(2+)] than WT EHTs. Expression of WT-Mybpc3 at MOI-100 resulted in ~73% cMyBP-C level but did not prevent the KO phenotype, whereas MOI-300 resulted in ≥95% cMyBP-C level and prevented the KO phenotype. Expression of the truncating or missense mutation (MOI-300) or their combination with WT (MOI-150 each), mimicking the homozygous or heterozygous disease state, respectively, failed to restore force to WT level. Immunofluorescence analysis revealed correct incorporation of WT and missense, but not of truncated cMyBP-C in the sarcomere. In conclusion, this study provides evidence in KO EHTs that i) haploinsufficiency affects EHT contractile function if WT cMyBP-C protein levels are ≤73%, ii) missense or truncating mutations, but not WT do not fully restore the disease phenotype and have different pathogenic mechanisms, e.g. sarcomere poisoning for the missense mutation, iii) the direct impact of (newly identified) MYBPC3 gene variants can be evaluated.


Asunto(s)
Proteínas Portadoras/genética , Mutación , Contracción Miocárdica/genética , Miocardio/metabolismo , Animales , Cardiomiopatía Hipertrófica/genética , Cardiomiopatía Hipertrófica/metabolismo , Cardiomiopatía Hipertrófica/patología , Línea Celular , Expresión Génica , Genotipo , Haploinsuficiencia , Humanos , Ratones , Ratones Noqueados , Mutación Missense , Fenotipo , Sarcómeros/metabolismo , Ingeniería de Tejidos
17.
Cardiovasc Res ; 109(1): 90-102, 2016 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-26531128

RESUMEN

AIMS: Hypertrophic cardiomyopathy (HCM) is often accompanied by increased myofilament Ca(2+) sensitivity and diastolic dysfunction. Recent findings indicate increased late Na(+) current density in human HCM cardiomyocytes. Since ranolazine has the potential to decrease myofilament Ca(2+) sensitivity and late Na(+) current, we investigated its effects in an Mybpc3-targeted knock-in (KI) mouse model of HCM. METHODS AND RESULTS: Unloaded sarcomere shortening and Ca(2+) transients were measured in KI and wild-type (WT) cardiomyocytes. Measurements were performed at baseline (1 Hz) and under increased workload (30 nM isoprenaline (ISO), 5 Hz) in the absence or presence of 10 µM ranolazine. KI myocytes showed shorter diastolic sarcomere length at baseline, stronger inotropic response to ISO, and drastic drop of diastolic sarcomere length under increased workload. Ranolazine attenuated ISO responses in WT and KI cells and prevented workload-induced diastolic failure in KI. Late Na(+) current density was diminished and insensitive to ranolazine in KI cardiomyocytes. Ca(2+) sensitivity of skinned KI trabeculae was slightly decreased by ranolazine. Phosphorylation analysis of cAMP-dependent protein kinase A-target proteins and ISO concentration-response measurements on muscle strips indicated antagonism at ß-adrenoceptors with 10 µM ranolazine shifting the ISO response by 0.6 log units. Six-month treatment with ranolazine (plasma level >20 µM) demonstrated a ß-blocking effect, but did not reverse cardiac hypertrophy or dysfunction in KI mice. CONCLUSION: Ranolazine improved tolerance to high workload in mouse HCM cardiomyocytes, not by blocking late Na(+) current, but by antagonizing ß-adrenergic stimulation and slightly desensitizing myofilaments to Ca(2+). This effect did not translate in therapeutic efficacy in vivo.


Asunto(s)
Antagonistas Adrenérgicos beta/farmacología , Cardiomiopatía Hipertrófica/tratamiento farmacológico , Miocitos Cardíacos/efectos de los fármacos , Ranolazina/farmacología , Bloqueadores de los Canales de Sodio/farmacología , Animales , Calcio/metabolismo , Cardiomiopatía Hipertrófica/fisiopatología , Relación Dosis-Respuesta a Droga , Isoproterenol/farmacología , Ratones , Miocitos Cardíacos/fisiología , Fosforilación
18.
J Mol Cell Cardiol ; 87: 214-24, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26343497

RESUMEN

BACKGROUND: Hypertrophic cardiomyopathy (HCM) is an autosomal-dominant disease with mutations in genes encoding sarcomeric proteins. Previous findings suggest deregulation of the ubiquitin proteasome system (UPS) in HCM in humans and in a mouse model of HCM (Mybpc3-targeted knock-in (KI) mice). In this study we investigated transcript levels of several muscle-specific E3 ubiquitin ligases in KI mice and aimed at identifying novel protein targets. METHODS AND RESULTS: Out of 9 muscle-specific E3 ligases, Asb2ß was found with the lowest mRNA level in KI compared to wild-type (WT) mice. After adenoviral-mediated Asb2ß transduction of WT neonatal mouse cardiomyocytes with either a WT or inactive Asb2ß mutant, desmin was identified as a new target of Asb2ß by mass spectrometry, co-immunoprecipitation and immunoblotting. Immunofluorescence analysis revealed a co-localization of desmin with Asb2ß at the Z-disk of the sarcomere. Knock-down of Asb2ß in cardiomyocytes resulted in higher desmin protein levels. Furthermore, desmin levels were higher in ventricular samples of HCM mice and patients than controls. CONCLUSIONS: This study identifies desmin as a new Asb2ß target for proteasomal degradation in cardiomyocytes and suggests that accumulation of desmin could contribute to UPS impairment in HCM mice and patients.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/genética , Cardiomiopatía Hipertrófica/genética , Desmina/metabolismo , Miocardio/metabolismo , Miocitos Cardíacos/metabolismo , Proteínas Adaptadoras Transductoras de Señales/biosíntesis , Animales , Cardiomiopatía Hipertrófica/patología , Desmina/genética , Modelos Animales de Enfermedad , Regulación de la Expresión Génica , Humanos , Ratones , Mutación , Miocardio/patología , Miocitos Cardíacos/patología , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteolisis , Sarcómeros/metabolismo , Proteínas Supresoras de la Señalización de Citocinas , Ubiquitina
19.
Int J Cardiol Heart Vasc ; 8: 87-94, 2015 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-28785686

RESUMEN

AIMS: Hypertrophic cardiomyopathy (HCM) is characterized by left ventricular hypertrophy, diastolic dysfunction and increased interstitial fibrosis. Current treatment is based on beta-adrenoceptor (AR) and calcium channel blockers. Since mice deficient of protein phosphatase-1 inhibitor-1 (I-1), an amplifier in beta-AR signalling, were protected from pathological adrenergic stimulation in vivo, we hypothesized that I-1 ablation could result in an improved outcome in a HCM mouse model. METHODS AND RESULTS: We crossed mice deficient of I-1 with homozygous myosin-binding protein C knock-out (Mybpc3 KO) mice exhibiting cardiac dilatation and reduced survival. Unexpectedly, survival time was shorter in double I-1/Mybpc3 KO than in single Mybpc3 KO mice. Longitudinal echocardiographic assessment revealed lower fractional area change, and higher diastolic left ventricular inner dimensions and end-diastolic volumes in Mybpc3 KO than in WT mice. In comparison to Mybpc3 KO, double I-1/Mybpc3 KO presented higher left ventricular end-diastolic volumes, inner dimensions and ventricular surface areas with increasing differences over time. Phosphorylation levels of PKA-downstream targets and mRNA levels of hypertrophic markers did not differ between I-1/Mybpc3 KO and single Mybpc3 KO mice, except a trend towards higher beta-myosin heavy chain levels in double I-1/Mybpc3 KO. CONCLUSION: The data indicate that interference with beta-AR signalling has no long-term benefit in this severe MYBPC3-related cardiomyopathy mouse model.

20.
Basic Res Cardiol ; 109(6): 451, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25358972

RESUMEN

Based on evidence that FHL2 (four and a half LIM domains protein 2) negatively regulates cardiac hypertrophy we tested whether FHL2 altered expression or variants could be associated with hypertrophic cardiomyopathy (HCM). HCM is a myocardial disease characterized by left ventricular hypertrophy, diastolic dysfunction and increased interstitial fibrosis and is mainly caused by mutations in genes coding for sarcomeric proteins. FHL2 mRNA level, FHL2 protein level and I-band-binding density were lower in HCM patients than control individuals. Screening of 121 HCM patients without mutations in established disease genes identified 2 novel (T171M, V187L) and 4 known (R177Q, N226N, D268D, P273P) FHL2 variants in unrelated HCM families. We assessed the structural and functional consequences of the nonsynonymous substitutions after adeno-associated viral-mediated gene transfer in cardiac myocytes and in 3D-engineered heart tissue (EHT). Overexpression of FHL2 wild type or nonsynonymous substitutions in cardiac myocytes markedly down-regulated α-skeletal actin and partially blunted hypertrophy induced by phenylephrine or endothelin-1. After gene transfer in EHTs, force and velocity of both contraction and relaxation were higher with T171M and V187L FHL2 variants than wild type under basal conditions. Finally, chronic phenylephrine stimulation depressed EHT function in all groups, but to a lower extent in T171M-transduced EHTs. These data suggest that (1) FHL2 is down-regulated in HCM, (2) both FHL2 wild type and variants partially protected phenylephrine- or endothelin-1-induced hypertrophy in cardiac myocytes, and (3) FHL2 T171M and V187L nonsynonymous variants induced altered EHT contractility. These findings provide evidence that the 2 novel FHL2 variants could increase cardiac function in HCM.


Asunto(s)
Cardiomiopatía Hipertrófica/genética , Proteínas con Homeodominio LIM/genética , Proteínas Musculares/genética , Factores de Transcripción/genética , Adolescente , Adulto , Anciano , Animales , Preescolar , Femenino , Regulación de la Expresión Génica , Humanos , Masculino , Ratones , Persona de Mediana Edad , Linaje
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...