Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Br J Pharmacol ; 171(24): 5774-89, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25117266

RESUMEN

BACKGROUND AND PURPOSE: GPR119 is a Gαs-coupled 7TM receptor activated by endogenous lipids such as oleoylethanolamide (OEA) and by the dietary triglyceride metabolite 2-monoacylglycerol. GPR119 stimulates enteroendocrine hormone and insulin secretion. But despite massive drug discovery efforts in the field, very little is known about the basic molecular pharmacology of GPR119. EXPERIMENTAL APPROACH: GPR119 receptor signalling was studied in transfected cells. Mutational mapping (30 mutations in 23 positions) was performed on residues required for ligand-independent and agonist-induced GPR119 activation (AR231453 and OEA). Novel Rosetta-based receptor modelling was applied, using a composite template approach with segments from different X-ray structures and fully flexible ligand docking. KEY RESULTS: The increased signalling induced by increasing the cell surface expression of GPR119 in the absence of agonist and the inhibitory effect of two synthetic inverse agonists demonstrated that GRP119 signals with a high degree of constitutive activity through the Gαs pathway. The mutational maps for AR231453 and OEA were very similar and, surprisingly, also similar to the mutational map for residues affecting the constitutive signalling - albeit with key differences. Surprisingly, almost all residues in extracellular loop-2b were important for the constitutive activity. The molecular modelling and docking demonstrated that AR231453 binds in a 'vertical' pocket in between mutational hits reaching from the centre of the receptor out to extracellular loop-2b. CONCLUSIONS AND IMPLICATIONS: The high constitutive activity of GPR119 should be taken into account in future drug discovery efforts, which can now be guided by the detailed knowledge of the physiochemical properties of the extended ligand-binding pocket.


Asunto(s)
Células Enteroendocrinas/metabolismo , Insulina/metabolismo , Ácidos Oléicos/farmacología , Oxadiazoles/farmacología , Pirimidinas/farmacología , Receptores Acoplados a Proteínas G/agonistas , Animales , Células COS , Chlorocebus aethiops , Endocannabinoides , Secreción de Insulina , Simulación del Acoplamiento Molecular , Estructura Terciaria de Proteína , Receptores Acoplados a Proteínas G/metabolismo , Transfección
2.
Br J Pharmacol ; 171(6): 1566-79, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24328926

RESUMEN

BACKGROUND AND PURPOSE: A conserved amino acid within a protein family indicates a significance of the residue. In the centre of transmembrane helix (TM)-5, position V:13/5.47, an aromatic amino acid is conserved among class A 7TM receptors. However, in 37% of chemokine receptors - a subgroup of 7TM receptors - it is a leucine indicating an altered function. Here, we describe the significance of this position and its possible interaction with TM-3 for CCR5 activity. EXPERIMENTAL APPROACH: The effects of [L203F]-CCR5 in TM-5 (position V:13/5.47), [I116A]-CCR5 in TM-3 (III:16/3.40) and [L203F;G286F]-CCR5 (V:13/5.47;VII:09/7.42) were determined in G-protein- and ß-arrestin-coupled signalling. Computational modelling monitored changes in amino acid conformation. KEY RESULTS: [L203F]-CCR5 increased the basal level of G-protein coupling (20-70% of Emax ) and ß-arrestin recruitment (50% of Emax ) with a threefold increase in agonist potency. In silico, [I116A]-CCR5 switched χ1-angle in [L203F]-CCR5. Furthermore, [I116A]-CCR5 was constitutively active to a similar degree as [L203F]-CCR5. Tyr(244) in TM-6 (VI:09/6.44) moved towards TM-5 in silico, consistent with its previously shown function for CCR5 activation. On [L203F;G286F]-CCR5 the antagonist aplaviroc was converted to a superagonist. CONCLUSIONS AND IMPLICATIONS: The results imply that an aromatic amino acid in the centre of TM-5 controls the level of receptor activity. Furthermore, Ile(116) acts as a gate for the movement of Tyr(244) towards TM-5 in the active state, a mechanism proposed previously for the ß2 -adrenoceptor. The results provide an understanding of chemokine receptor function and thereby information for the development of biased and non-biased antagonists and inverse agonists.


Asunto(s)
Activación del Canal Iónico , Isoleucina/fisiología , Receptores CCR5/fisiología , Secuencia de Aminoácidos , Animales , Células COS , Chlorocebus aethiops , Ensayo de Inmunoadsorción Enzimática , Humanos , Datos de Secuencia Molecular , Receptores CCR5/química , Homología de Secuencia de Aminoácido
3.
Br J Pharmacol ; 166(1): 258-75, 2012 May.
Artículo en Inglés | MEDLINE | ID: mdl-22050085

RESUMEN

BACKGROUND AND PURPOSE: The majority of small molecule compounds targeting chemokine receptors share a similar pharmacophore with a centrally located aliphatic positive charge and flanking aromatic moieties. Here we describe a novel piperidine-based compound with structural similarity to previously described CCR8-specific agonists, but containing a unique phenyl-tetrazol moiety which, in addition to activity at CCR8 was also active at CCR1. EXPERIMENTAL APPROACH: Single point mutations were introduced in CCR1 and CCR8, and their effect on small molecule ligand-induced receptor activation was examined through inositol trisphosphate (IP(3) ) accumulation. The molecular interaction profile of the agonist was verified by molecular modeling. KEY RESULTS: The chemokine receptor conserved glutamic acid in TM-VII served as a common anchor for the positively charged amine in the piperidine ring. However, whereas the phenyl-tetrazol group interacted with TyrIV:24 (Tyr(172) ) and TyrIII:09 (Tyr(114) ) in the major binding pocket (delimited by TM-III to VII) of CCR8, it also interacted with TrpII:20 (Trp(90) ) and LysII:24 (Lys(94) ) in the minor counterpart (delimited TM-I to III, plus TM-VII) in CCR1. A straightening of TM-II by Ala-substitution of ProII:18 confirmed its unique role in CCR1. The extracellular loop 2 (ECL-2) contributed directly to the small molecule binding site in CCR1, whereas it contributed to efficacy, but not potency in CCR8. CONCLUSION AND IMPLICATIONS: Despite high ligand potency and efficacy and receptor similarity, this dual-active and bitopic compound binds oppositely in CCR1 and CCR8 with different roles of ECL-2, thereby expanding and diversifying the influence of extracellular receptor regions in drug action.


Asunto(s)
Inositol 1,4,5-Trifosfato/metabolismo , Piperidinas/farmacología , Receptores CCR1/metabolismo , Receptores CCR8/metabolismo , Tetrazoles/farmacología , Animales , Sitios de Unión , Células COS , Chlorocebus aethiops , Ácido Glutámico/metabolismo , Humanos , Ligandos , Modelos Moleculares , Piperidinas/química , Piperidinas/metabolismo , Mutación Puntual , Receptores CCR1/agonistas , Receptores CCR1/genética , Receptores CCR8/agonistas , Receptores CCR8/genética , Tetrazoles/química , Tetrazoles/metabolismo
4.
J Chem Inf Comput Sci ; 40(6): 1315-24, 2000.
Artículo en Inglés | MEDLINE | ID: mdl-11128089

RESUMEN

We have used a feed-forward neural network technique to classify chemical compounds into potentially "drug-like" and "non drug-like" candidates. The neural network was trained to distinguish between a set of "drug-like" and "non drug-like" chemical compounds taken from the MACCS-II Drug Data Report (MDDR) and the Available Chemicals Directory (ACD). The 2D atom types (of the full atomic representation) were assigned and applied as descriptors to encode numerically each compound. There are four main conclusions: First the method performs well, correctly assigning 88% of the compounds in both MDDR and ACD. Improved discrimination was achieved by a more critical selection of training sets. Second, the method gives much better prediction performance than the widely used "Rule of Five", which accepts as many as 74% of the ACD compounds but only 66% of those in MDDR, resulting in a correlation coefficient which is effectively zero, compared to a value of 0.63 for the neural network prediction. Third, based on a standard Tanimoto similarity search the selection of drug-like compounds in the evaluation set is not biased toward compounds similar to those in the training set. Fourth, the trained neural network was applied to evaluate the drug-likeness of 136 GABA uptake inhibitors with impressive results. The implications of applying a neural network to characterize chemical compounds are discussed.


Asunto(s)
Antagonistas del GABA/clasificación , Algoritmos , Sistemas de Administración de Bases de Datos , Antagonistas del GABA/química , Estructura Molecular , Redes Neurales de la Computación
5.
Biophys J ; 78(5): 2191-200, 2000 May.
Artículo en Inglés | MEDLINE | ID: mdl-10777720

RESUMEN

Molecular dynamics simulations of protein tyrosine phosphatase 1B (PTP1B) complexed with the phosphorylated peptide substrate DADEpYL and the free substrate have been conducted to investigate 1) the physical forces involved in substrate-protein interactions, 2) the importance of enzyme and substrate flexibility for binding, 3) the electrostatic properties of the enzyme, and 4) the contribution from solvation. The simulations were performed for 1 ns, using explicit water molecules. The last 700 ps of the trajectories was used for analysis determining enthalpic and entropic contributions to substrate binding. Based on essential dynamics analysis of the PTP1B/DADEpYL trajectory, it is shown that internal motions in the binding pocket occur in a subspace of only a few degrees of freedom. In particular, relatively large flexibilities are observed along several eigenvectors in the segments: Arg(24)-Ser(28), Pro(38)-Arg(47), and Glu(115)-Gly(117). These motions are correlated to the C- and N-terminal motions of the substrate. Relatively small fluctuations are observed in the region of the consensus active site motif (H/V)CX(5)R(S/T) and in the region of the WPD loop, which contains the general acid for catalysis. Analysis of the individual enzyme-substrate interaction energies revealed that mainly electrostatic forces contribute to binding. Indeed, calculation of the electrostatic field of the enzyme reveals that only the field surrounding the binding pocket is positive, while the remaining protein surface is characterized by a predominantly negative electrostatic field. This positive electrostatic field attracts negatively charged substrates and could explain the experimentally observed preference of PTP1B for negatively charged substrates like the DADEpYL peptide.


Asunto(s)
Proteínas Tirosina Fosfatasas/química , Proteínas Tirosina Fosfatasas/metabolismo , Secuencia de Aminoácidos , Sitios de Unión , Fenómenos Biofísicos , Biofisica , Modelos Moleculares , Oligopéptidos/química , Conformación Proteica , Proteína Tirosina Fosfatasa no Receptora Tipo 1 , Electricidad Estática , Especificidad por Sustrato , Termodinámica
6.
Biophys J ; 77(1): 505-15, 1999 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-10388775

RESUMEN

Activity of enzymes, such as protein tyrosine phosphatases (PTPs), is often associated with structural changes in the enzyme, resulting in selective and stereospecific reactions with the substrate. To investigate the effect of a substrate on the motions occurring in PTPs, we have performed molecular dynamics simulations of PTP1B and PTP1B complexed with a high-affinity peptide DADEpYL, where pY stands for phosphorylated tyrosine. The peptide sequence is derived from the epidermal growth factor receptor (EGFR988-993). Simulations were performed in water for 1 ns, and the concerted motions in the protein were analyzed using the essential dynamics technique. Our results indicate that the predominately internal motions in PTP1B occur in a subspace of only a few degrees of freedom. Upon substrate binding, the flexibility of the protein is reduced by approximately 10%. The largest effect is found in the protein region, where the N-terminal of the substrate is located, and in the loop region Val198-Gly209. Displacements in the latter loop are associated with the motions in the WPD loop, which contains a catalytically important aspartic acid. Estimation of the pKa of the active-site cysteine along the trajectory indicates that structural inhomogeneity causes the pKa to vary by approximately +/-1 pKa unit. In agreement with experimental observations, the active-site cysteine is negatively charged at physiological pH.


Asunto(s)
Receptores ErbB/química , Ligandos , Proteínas Tirosina Fosfatasas/química , Algoritmos , Simulación por Computador , Cisteína/química , Concentración de Iones de Hidrógeno , Modelos Moleculares , Fragmentos de Péptidos/química , Fosforilación , Unión Proteica , Conformación Proteica , Estructura Secundaria de Proteína
7.
Proteins ; 35(4): 375-86, 1999 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-10382665

RESUMEN

A three-dimensional (3D) model of the integral membrane domain of the GLP1 receptor, a member of the secretin receptor family of the G-protein-coupled receptor superfamily is proposed. The probable arrangement of the seven helices in this receptor was deduced from a detailed analysis of all the sequences in the secretin receptor family. The analysis includes: 1) identifying the transmembrane helices, 2) charge distribution analysis to estimate to which extent the transmembrane helices are buried, 3) Fourier transform analysis of different property profiles within the transmembrane helices to determine the orientation of exposed and buried faces of the helices, 4) alignment of sequences with those of the rhodopsin-like family using the novel "cold spot" method reported herein, 5) determination of lengths of transmembrane helices and their connecting loops and the constraints these impose on packing, tilting and organization, 6) incorporation of mutagenesis and ligand specificity data. We find that there is a close similarity between the structural properties of receptors of the secretin family and those of the rhodopsin-like family as typified by the frog rhodopsin structure recently solved by electron cryomicroscopy.


Asunto(s)
Proteínas de la Membrana/química , Receptores de la Hormona Gastrointestinal/química , Secuencia de Aminoácidos , Secuencia Conservada , Proteínas de la Membrana/genética , Modelos Moleculares , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Estructura Secundaria de Proteína , Receptores Acoplados a Proteínas G , Receptores de la Hormona Gastrointestinal/genética , Homología de Secuencia de Aminoácido
8.
Protein Sci ; 8(1): 25-34, 1999 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-10210180

RESUMEN

NMR spectroscopic analysis of the C-terminal Kunitz domain fragment (alpha3(VI)) from the human alpha3-chain of type VI collagen has revealed that the side chain of Trp21 exists in two unequally populated conformations. The major conformation (M) is identical to the conformation observed in the X-ray crystallographic structure, while the minor conformation (m) cannot structurally be resolved in detail by NMR due to insufficient NOE data. In the present study, we have applied: (1) rigid and adiabatic mapping, (2) free energy simulations, and (3) molecular dynamic simulations to elucidate the structure of the m conformer and to provide a possible pathway of the Trp21 side chain between the two conformers. Adiabatic energy mapping of conformations of the Trp21 side chain obtained by energy minimization identified two energy minima: One corresponding to the conformation of Trp21 observed in the X-ray crystallographic structure and solution structure of alpha3(VI) (the M conformation) and the second corresponding to the m conformation predicted by NMR spectroscopy. A transition pathway between the M and m conformation is suggested. The free-energy difference between the two conformers obtained by the thermodynamic integration method is calculated to 1.77+/-0.7 kcal/mol in favor of the M form, which is in good agreement with NMR results. Structural and dynamic properties of the major and minor conformers of the alpha3(VI) molecule were investigated by molecular dynamic. Essential dynamics analysis of the two resulting 800 ps trajectories reveals that when going from the M to the m conformation only small, localized changes in the protein structure are induced. However, notable differences are observed in the mobility of the binding loop (residues Thr13-Ile18), which is more flexible in the m conformation than in the M conformation. This suggests that the reorientation of Trp2 might influence the inhibitory activity against trypsin, despite the relative large distance between the binding loop and Trp21.


Asunto(s)
Colágeno/química , Cristalografía por Rayos X , Humanos , Espectroscopía de Resonancia Magnética , Conformación Proteica , Termodinámica , Triptófano/química
9.
Biochemistry ; 37(16): 5383-93, 1998 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-9548920

RESUMEN

The catalytic activity of protein-tyrosine phosphatases (PTPs) is mediated by a cysteine side chain which carries out a nucleophilic attack initiating the phosphate cleavage. Experimentally, it has been observed that the active site cysteine has a remarkably low pKa. In the present study, we have investigated the origin of the low pKa by analyzing the electrostatic properties of four different protein-tyrosine phosphatases: Yersinia PTP (bacteria), PTP1B (human), VHR (human), and low molecular weight phosphatase (bovine). These phosphatases have very low sequence homology and show very low structural similarity. However, they share a common active site motif [the (H/V)CX5R(S/T) sequence] which adopts a unique loop structure. We have applied the so-called single site titration method, which is based on the Poisson-Boltzmann methodology, to (i) study the influence of the architecture of the (H/V)CX5R(S/T) loop on the pKa of the active cysteine and (ii) examine which parts of the active site region stabilize the ionized form of the cysteine. Our results indicate that the architecture of the (H/V)CX5R(S/T) loop has a major impact on the low pKa of the active cysteines. The orientation of the microdipoles generated by the partial charges of the backbone atoms (i.e., the CONHCalpha atoms) is essential for maintaining the low pKa. Further, the electrostatic field generated by these microdipoles has a larger impact than the electrostatic dipole generated by the central alpha-helix. Interactions of the active cysteine with other ionizable side chains play a minor role in stabilizing the thiolate anion. The only ionizable side chain significantly influencing the pKa of the active site cysteine is the arginine, which is an important part of the consensus sequence.


Asunto(s)
Proteínas Tirosina Fosfatasas/química , Proteínas Tirosina Fosfatasas/metabolismo , Secuencia de Aminoácidos , Animales , Sitios de Unión , Bovinos , Cristalografía por Rayos X , Humanos , Concentración de Iones de Hidrógeno , Modelos Moleculares , Datos de Secuencia Molecular , Peso Molecular , Estructura Secundaria de Proteína , Sensibilidad y Especificidad , Homología de Secuencia de Aminoácido , Electricidad Estática , Yersinia/enzimología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA