Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Chembiochem ; 25(1): e202300701, 2024 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-37861375

RESUMEN

Post-synthetic modification of nucleic acid structures with clickable functionality is a versatile tool that facilitates many emerging applications, including immune evasion, enhancements in stability, fluorescent labelling, chemical 5'-RNA-capping and the development of functional aptamers. While certain chemoenzymatic approaches for 3'-azido and alkynyl labelling are known, equivalent 5'-strategies are either inefficient, complex, or require harsh chemical conditions. Here, we present a modular and facile technology to consecutively modify DNA and RNA strands at both ends with click-modifiable functional groups. Our approach using γ-modified ATP analogues facilitates T4 PNK-catalysed 5'-modification of oligonucleotides, a process that is compatible with TdT-catalysed 3'-elongation using 3'-azido-2',3'-ddGTP. Finally, we demonstrate that our approach is suitable for both oligo-oligo ligations, as well ssDNA circularization. We anticipate that such approaches will pave the way for the synthesis of highly functionalised oligonucleotides, improving the therapeutic and diagnostic applicability of oligonucleotides such as in the realm of next-generation sequencing.


Asunto(s)
ADN , Oligonucleótidos , ADN/química , Oligonucleótidos/química , ARN/química , Química Clic
2.
Nat Commun ; 14(1): 4564, 2023 07 28.
Artículo en Inglés | MEDLINE | ID: mdl-37507393

RESUMEN

Recent studies of severe acute inflammatory lung disease including COVID-19 identify macrophages to drive pulmonary hyperinflammation and long-term damage such as fibrosis. Here, we report on the development of a first-in-class, carbohydrate-coupled inhibitor of microRNA-21 (RCS-21), as a therapeutic means against pulmonary hyperinflammation and fibrosis. MicroRNA-21 is among the strongest upregulated microRNAs in human COVID-19 and in mice with acute inflammatory lung damage, and it is the strongest expressed microRNA in pulmonary macrophages. Chemical linkage of a microRNA-21 inhibitor to trimannose achieves rapid and specific delivery to macrophages upon inhalation in mice. RCS-21 reverses pathological activation of macrophages and prevents pulmonary dysfunction and fibrosis after acute lung damage in mice. In human lung tissue infected with SARS-CoV-2 ex vivo, RCS-21 effectively prevents the exaggerated inflammatory response. Our data imply trimannose-coupling for effective and selective delivery of inhaled oligonucleotides to pulmonary macrophages and report on a first mannose-coupled candidate therapeutic for COVID-19.


Asunto(s)
COVID-19 , MicroARNs , Neumonía , Ratones , Humanos , Animales , COVID-19/patología , SARS-CoV-2 , Pulmón/patología , Macrófagos , Neumonía/patología , MicroARNs/genética , MicroARNs/farmacología , Fibrosis
3.
Chembiochem ; 24(5): e202200658, 2023 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-36594506

RESUMEN

The identification of pseudo- and N1 -methylpseudo-uridine (Ψ and mΨ, respectively) as immunosilent uridine analogues has propelled the development of mRNA-based vaccines and therapeutics. Here, we have characterised another uridine analogue, 5-ethynyluridine (EU), which has an ethynyl moiety. We show that this uridine analogue does not cause immune activation in human macrophages, as it does not induce interleukin-6 secretion or expression of the inflammatory and antiviral genes MX1, PKR, and TAP2. Moreover, EU allows for prolonged expression, as shown with mRNA coding for yellow fluorescent protein (YFP). Side-by-side comparisons of EU with unmodified, Ψ, and mΨ revealed that EU-modified mRNA is expressed at lower levels, but confers similar stability and low immunogenicity to the other uridine analogues. Furthermore, structure analysis of modified mRNAs suggests that the observed phenotype is largely independent of RNA folding. Thus, EU is a potential candidate for RNA-based vaccines and therapeutics.


Asunto(s)
Antivirales , Vacunas , Humanos , ARN Mensajero/genética , ARN Mensajero/química , Uridina
4.
Chemistry ; 29(5): e202202633, 2023 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-36317813

RESUMEN

Biorthogonal labelling with fluorescent small molecules is an indispensable tool for diagnostic and biomedical applications. In dye-based 5-ethynyl-2'-deoxyuridine (EdU) cell proliferation assays, augmentation of the fluorescent signal entails an overall enhancement in the sensitivity and quality of the method. To this end, a rapid, divergent synthetic procedure that provides ready-to-click pH-insensitive rhodamine dyes exhibiting outstanding brightness was established. Compared to the shortest available synthesis of related high quantum-yielding rhodamines, two fewer synthetic steps are required. In a head-to-head imaging comparison involving copper(I)-catalyzed azide alkyne cycloaddition reactions with in vitro administered EdU, our new 3,3-difluoroazetidine rhodamine azide outperformed the popular 5-TAMRA-azide, making it among the best available choices when it comes to fluorescent imaging of DNA. In a further exploration of the fluorescence properties of these dyes, a set of bis-MPA dendrons carrying multiple fluorescein or rhodamine units was prepared by branching click chemistry. Fluorescence self-quenching of fluorescein- and rhodamine-functionalized dendrons limited the suitability of the dyes as labels in EdU-based experiments but provided new insights into these effects.


Asunto(s)
Dendrímeros , Xantenos , Química Clic/métodos , Azidas/química , Dendrímeros/química , Rodaminas/química , Colorantes/química , Fluoresceína/química , Colorantes Fluorescentes/química
5.
Bioconjug Chem ; 33(10): 1789-1795, 2022 10 19.
Artículo en Inglés | MEDLINE | ID: mdl-36154005

RESUMEN

Here we describe the development of a novel click chemistry-based method for the generation and amplification of full-length cDNA libraries from total RNA, while avoiding the need for problematic template-switching (TS) reactions. Compared with prior efforts, our method involves neither random priming nor stochastic cDNA termination, thus enabling amplification of transcripts that were previously inaccessible via related click chemistry-based RNA sequencing techniques. A key modification involving the use of PCR primers containing two overhanging 3'-nucleotides substantially improved the read-through compatibility of the 1,4-disubstituted 1,2,3-triazole-containing cDNA, where such modifications typically hinder amplification. This allowed us to more than double the possible insert size compared with the state-of-the art click chemistry-based technique, PAC-seq. Furthermore, our method performed on par with a commercially available PCR-cDNA RNA sequencing kit, as determined by Oxford Nanopore sequencing. Given the known advantages of PAC-seq, namely, suppression of PCR artifacts, we anticipate that our contribution could enable diverse applications including improved analyses of mRNA splicing variants and fusion transcripts.


Asunto(s)
Química Clic , Secuenciación de Nucleótidos de Alto Rendimiento , ADN Complementario/genética , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Cartilla de ADN , ARN/genética , ARN Mensajero/genética , Triazoles
6.
Chembiochem ; 21(15): 2214-2218, 2020 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-32187837

RESUMEN

The reliable detection of transcription events through the quantification of the corresponding mRNA is of paramount importance for the diagnostics of infections and diseases. The quantification and localization analysis of the transcripts of a particular gene allows disease states to be characterized more directly compared to an analysis on the transcriptome wide level. This is particularly needed for the early detection of virus infections as now required for emergent viral diseases, e. g. Covid-19. In situ mRNA analysis, however, is a formidable challenge and currently performed with sets of single-fluorophore-containing oligonucleotide probes that hybridize to the mRNA in question. Often a large number of probe strands (>30) are required to get a reliable signal. The more oligonucleotide probes are used, however, the higher the potential off-target binding effects that create background noise. Here, we used click chemistry and alkyne-modified DNA oligonucleotides to prepare multiple-fluorophore-containing probes. We found that these multiple-dye probes allow reliable detection and direct visualization of mRNA with only a very small number (5-10) of probe strands. The new method enabled the in situ detection of viral transcripts as early as 4 hours after infection.


Asunto(s)
Química Clic/métodos , Diagnóstico Precoz , Hibridación Fluorescente in Situ/métodos , Sondas de Oligonucleótidos/química , ARN Mensajero/análisis , ARN Viral/análisis , Alquinos/química , Betacoronavirus/genética , COVID-19 , Infecciones por Coronavirus/diagnóstico , Humanos , Oligodesoxirribonucleótidos/química , Pandemias , Neumonía Viral/diagnóstico , SARS-CoV-2
7.
Chembiochem ; 21(11): 1641-1646, 2020 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-31943671

RESUMEN

Synthetic mRNAs are promising candidates for a new class of transformative drugs that provide genetic information for patients' cells to develop their own cure. One key advancement to develop so-called druggable mRNAs was the preparation of chemically modified mRNAs, by replacing standard bases with modified bases, such as uridine with pseudouridine, which can ameliorate the immunogenic profile and translation efficiency of the mRNA. Thus the introduction of modified nucleobases was the foundation for the clinical use of such mRNAs. Herein we describe modular and simple methods to chemoenzymatically modify mRNA. Alkyne- and/or azide-modified nucleotides are enzymatically incorporated into mRNA and subsequently conjugated to fluorescent dyes using click chemistry. This allows visualization of the labeled mRNA inside cells. mRNA coding for the enhanced green fluorescent protein (eGFP) was chosen as a model system and the successful expression of eGFP demonstrated that our modified mRNA is accepted by the translation machinery.


Asunto(s)
Azidas/química , Química Clic/métodos , Nucleótidos de Desoxiuracil/química , Desoxiuridina/análogos & derivados , Didesoxiadenosina/análogos & derivados , Proteínas Fluorescentes Verdes/química , Seudouridina/química , ARN Mensajero/química , Azidas/metabolismo , Sistema Libre de Células/metabolismo , ADN/genética , ADN/metabolismo , ARN Polimerasas Dirigidas por ADN/genética , ARN Polimerasas Dirigidas por ADN/metabolismo , Nucleótidos de Desoxiuracil/metabolismo , Desoxiuridina/química , Desoxiuridina/metabolismo , Didesoxiadenosina/química , Didesoxiadenosina/metabolismo , Proteínas Fluorescentes Verdes/biosíntesis , Proteínas Fluorescentes Verdes/genética , Humanos , Biosíntesis de Proteínas , Seudouridina/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Transcripción Genética , Uridina/química , Uridina/metabolismo , Proteínas Virales/genética , Proteínas Virales/metabolismo
8.
Bioconjug Chem ; 31(3): 507-512, 2020 03 18.
Artículo en Inglés | MEDLINE | ID: mdl-31874033

RESUMEN

We report a chemical DNA-DNA ligation method based on copper-catalyzed azide-alkyne cycloaddition (CuAAC). We demonstrate that ion addition dramatically influences the efficiency of the so-called click reaction. Even without any further additions, such as typically splint oligonucleotides for preorganization, the "click ligation" yields up to ∼83% product without any byproducts. Additionally, purification of the desired product is straightforward. In comparison to enzymatic ligation methods used to introduce adapters into, e.g., mRNA library preparation, this targeted chemical ligation method exhibits several advantages: increased ligated product and no adapter or cDNA oligomers byproducts. The advantages of the click ligation method were demonstrated by incorporation of azide modified nucleotides by several enzymes as well as broad polymerase acceptance of the obtained triazole linkage in PCR.


Asunto(s)
Química Clic , ADN/química , Alquinos/química , Azidas/química , Catálisis , Cobre/química , Reacción de Cicloadición , Modelos Moleculares , Conformación de Ácido Nucleico
9.
J Inherit Metab Dis ; 42(3): 527-533, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30746723

RESUMEN

Moss-aGalactosidase A (moss-aGal) is a moss-derived version of human α-galactosidase developed for enzyme replacement therapy in patients with Fabry disease. It exhibits a homogenous N-glycosylation profile with >90% mannose-terminated glycans. In contrast to mammalian cell produced α-galactosidase, moss-aGal does not rely on mannose-6-phosphate receptor mediated endocytosis but targets the mannose receptor for tissue uptake. We conducted a phase 1 clinical trial with moss-aGal in six patients with confirmed diagnosis of Fabry disease during a 28-day schedule. All patients received a single dose of 0.2 mg/kg moss-aGal by i.v.-infusion. Primary endpoints of the trial were safety and pharmacokinetics; secondary endpoints were pharmacodynamics by analyzing urine and plasma Gb3 and lyso-Gb3 concentrations. In all patients, the administered single dose was well tolerated. No safety issues were observed. Pharmacokinetic data revealed a stable nonlinear profile with a short plasma half-life of moss-aGal of 14 minutes. After one single dose of moss-aGal, urinary Gb3 concentrations decreased up to 23% 7 days and up to 60% 28 days post-dose. Plasma concentrations of lyso-Gb3 decreased by 3.8% and of Gb3 by 11% 28 days post-dose. These data reveal that a single dose of moss-aGal was safe, well tolerated, and led to a prolonged reduction of Gb3 excretion. As previously shown, moss-aGal is taken up via the mannose receptor, which is expressed on macrophages but also on endothelial and kidney cells. Thus, these data indicate that moss-aGal may target kidney cells. After these promising results, phase 2/3 clinical trials are in preparation.


Asunto(s)
Terapia de Reemplazo Enzimático , Enfermedad de Fabry/tratamiento farmacológico , Glucolípidos/sangre , Glucolípidos/orina , Esfingolípidos/sangre , Esfingolípidos/orina , alfa-Galactosidasa/farmacología , alfa-Galactosidasa/farmacocinética , Adulto , Enfermedad de Fabry/sangre , Enfermedad de Fabry/orina , Femenino , Alemania , Humanos , Infusiones Intravenosas , Masculino , Persona de Mediana Edad , Resultado del Tratamiento
10.
J Proteome Res ; 17(11): 3749-3760, 2018 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-30226384

RESUMEN

Host cell proteins are inevitable contaminants of biopharmaceuticals. Here, we performed detailed analyses of the host cell proteome of moss ( Physcomitrella patens) bioreactor supernatants using mass spectrometry and subsequent bioinformatics analysis. Distinguishing between the apparent secretome and intracellular contaminants, a complex extracellular proteolytic network including subtilisin-like proteases, metallo-proteases, and aspartic proteases was identified. Knockout of a subtilisin-like protease affected the overall extracellular proteolytic activity. Besides proteases, also secreted protease-inhibiting proteins such as serpins were identified. Further, we confirmed predicted cleavage sites of 40 endogenous signal peptides employing an N-terminomics approach. The present data provide novel aspects to optimize both product stability of recombinant biopharmaceuticals as well as their maturation along the secretory pathway. Data are available via ProteomeXchange with identifier PXD009517.


Asunto(s)
Proteasas de Ácido Aspártico/aislamiento & purificación , Bryopsida/enzimología , Metaloproteasas/aislamiento & purificación , Proteínas de Plantas/aislamiento & purificación , Inhibidores de Proteasas/aislamiento & purificación , Serpinas/aislamiento & purificación , Subtilisinas/aislamiento & purificación , Proteasas de Ácido Aspártico/clasificación , Proteasas de Ácido Aspártico/genética , Proteasas de Ácido Aspártico/metabolismo , Reactores Biológicos , Bryopsida/química , Bryopsida/genética , Biología Computacional , Técnicas de Inactivación de Genes , Espectrometría de Masas/métodos , Metaloproteasas/clasificación , Metaloproteasas/genética , Metaloproteasas/metabolismo , Proteínas de Plantas/clasificación , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Inhibidores de Proteasas/clasificación , Inhibidores de Proteasas/metabolismo , Análisis por Matrices de Proteínas , Proteolisis , Serpinas/clasificación , Serpinas/genética , Serpinas/metabolismo , Subtilisinas/clasificación , Subtilisinas/genética , Subtilisinas/metabolismo
11.
J Am Soc Nephrol ; 28(5): 1462-1474, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-27932477

RESUMEN

Genetic defects in complement regulatory proteins can lead to severe renal diseases, including atypical hemolytic uremic syndrome and C3 glomerulopathies, and age-related macular degeneration. The majority of the mutations found in patients with these diseases affect the glycoprotein complement factor H, the main regulator of the alternative pathway of complement activation. Therapeutic options are limited, and novel treatments, specifically those targeting alternative pathway activation, are highly desirable. Substitution with biologically active factor H could potentially treat a variety of diseases that involve increased alternative pathway activation, but no therapeutic factor H is commercially available. We recently reported the expression of full-length recombinant factor H in moss (Physcomitrella patens). Here, we present the production of an improved moss-derived recombinant human factor H devoid of potentially immunogenic plant-specific sugar residues on protein N-glycans, yielding approximately 1 mg purified moss-derived human factor H per liter of initial P. patens culture after a multistep purification process. This glycosylation-optimized factor H showed full in vitro complement regulatory activity similar to that of plasma-derived factor H and efficiently blocked LPS-induced alternative pathway activation and hemolysis induced by sera from patients with atypical hemolytic uremic syndrome. Furthermore, injection of moss-derived factor H reduced C3 deposition and increased serum C3 levels in a murine model of C3 glomerulopathy. Thus, we consider moss-produced recombinant human factor H a promising pharmaceutical product for therapeutic intervention in patients suffering from complement dysregulation.


Asunto(s)
Síndrome Hemolítico Urémico Atípico/tratamiento farmacológico , Bryopsida , Proteínas del Sistema Complemento , Enfermedades del Sistema Inmune/tratamiento farmacológico , Animales , Bryopsida/metabolismo , Factor H de Complemento/biosíntesis , Factor H de Complemento/metabolismo , Factor H de Complemento/uso terapéutico , Glicosilación , Humanos , Ratones
12.
J Inherit Metab Dis ; 39(3): 447-455, 2016 05.
Artículo en Inglés | MEDLINE | ID: mdl-26960552

RESUMEN

Fabry disease is caused by deficient activity of α-galactosidase A and subsequent intracellular accumulation of glycosphingolipids, mainly globotriaosylceramide (Gb3). Vascular endothelial cells may play important roles in disease pathogenesis, and are one of the main target cell types in therapeutic interventions. In this study, we generated immortalized aortic endothelial cell lines from a mouse model of Fabry disease. These cells retained endothelial cell-specific markers and functions. Gb3 expression level in one of these clones (referred to as FMEC2) was highly susceptible to culture media, and appeared to be regulated by glucosylceramide synthase. Results also showed that Gb3 could be upregulated by hydrocortisone. FMEC2 express the mannose 6-phosphate receptor and sortilin but not the mannose receptor. Uptake studies suggested that sortilin plays a role in the binding and internalization of mammalian cell-produced α-galactosidase A. Moss-aGal (a plant-made enzyme) was endocytosed by FMEC2 via a receptor other than the aforementioned receptors. In conclusion, this study suggests that glucosylceramide synthase and hydrocortisone may play important roles in modulating Gb3 levels in Fabry mouse aortic endothelial cells, and that endocytosis of recombinant α-galactosidase A involves a combination of multiple receptors depending on the properties of the enzyme.


Asunto(s)
Aorta/metabolismo , Células Endoteliales/enzimología , Células Endoteliales/metabolismo , Endotelio Vascular/metabolismo , Enfermedad de Fabry/enzimología , Enfermedad de Fabry/metabolismo , Trihexosilceramidas/metabolismo , Proteínas Adaptadoras del Transporte Vesicular/metabolismo , Animales , Biomarcadores/metabolismo , Línea Celular , Modelos Animales de Enfermedad , Endocitosis/fisiología , Endotelio Vascular/enzimología , Glucosiltransferasas/metabolismo , Glicoesfingolípidos/metabolismo , Lectinas Tipo C/metabolismo , Masculino , Receptor de Manosa , Lectinas de Unión a Manosa/metabolismo , Ratones , Ratones Endogámicos C57BL , Receptor IGF Tipo 2/metabolismo , Receptores de Superficie Celular/metabolismo , alfa-Galactosidasa/metabolismo
13.
J Inherit Metab Dis ; 39(2): 293-303, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26310963

RESUMEN

Enzyme replacement therapy (ERT) is an effective treatment for several lysosomal storage disorders (LSDs). Intravenously infused enzymes are taken up by tissues through either the mannose 6-phosphate receptor (M6PR) or the mannose receptor (MR). It is generally believed that M6PR-mediated endocytosis is a key mechanism for ERT in treating LSDs that affect the non-macrophage cells of visceral organs. However, the therapeutic efficacy of MR-mediated delivery of mannose-terminated enzymes in these diseases has not been fully evaluated. We tested the effectiveness of a non-phosphorylated α-galactosidase A produced from moss (referred to as moss-aGal) in vitro and in a mouse model of Fabry disease. Endocytosis of moss-aGal was MR-dependent. Compared to agalsidase alfa, a phosphorylated form of α-galactosidase A, moss-aGal was more preferentially targeted to the kidney. Cellular localization of moss-aGal and agalsidase alfa in the heart and kidney was essentially identical. A single injection of moss-aGal led to clearance of accumulated substrate in the heart and kidney to an extent comparable to that achieved by agalsidase alfa. This study suggested that mannose-terminated enzymes may be sufficiently effective for some LSDs in which non-macrophage cells are affected, and that M6P residues may not always be a prerequisite for ERT as previously considered.


Asunto(s)
Enfermedad de Fabry/enzimología , Enfermedad de Fabry/metabolismo , Lectinas Tipo C/metabolismo , Lectinas de Unión a Manosa/metabolismo , Manosafosfatos/metabolismo , Receptores de Superficie Celular/metabolismo , alfa-Galactosidasa/metabolismo , Animales , Línea Celular , Modelos Animales de Enfermedad , Terapia de Reemplazo Enzimático/métodos , Femenino , Humanos , Isoenzimas/metabolismo , Riñón/metabolismo , Enfermedades por Almacenamiento Lisosomal/enzimología , Enfermedades por Almacenamiento Lisosomal/metabolismo , Masculino , Receptor de Manosa , Ratones , Ratones Endogámicos C57BL , Receptor IGF Tipo 2/metabolismo , Proteínas Recombinantes
14.
Angew Chem Int Ed Engl ; 54(27): 7795-8, 2015 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-25980669

RESUMEN

DNA-based self-assembled nanostructures are widely used to position organic and inorganic objects with nanoscale precision. A particular promising application of DNA structures is their usage as programmable carrier systems for targeted drug delivery. To provide DNA-based templates that are robust against degradation at elevated temperatures, low ion concentrations, adverse pH conditions, and DNases, we built 6-helix DNA tile tubes consisting of 24 oligonucleotides carrying alkyne groups on their 3'-ends and azides on their 5'-ends. By a mild click reaction, the two ends of selected oligonucleotides were covalently connected to form rings and interlocked DNA single strands, so-called DNA catenanes. Strikingly, the structures stayed topologically intact in pure water and even after precipitation from EtOH. The structures even withstood a temperature of 95 °C when all of the 24 strands were chemically interlocked.


Asunto(s)
Alquinos/química , Azidas/química , ADN/química , Nanotubos/química , Química Clic , ADN Encadenado/química , Calor , Nanotecnología , Nanotubos/ultraestructura , Oligonucleótidos/química
15.
Virology ; 318(1): 90-101, 2004 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-14972538

RESUMEN

Coat proteins (CPs) of geminiviruses are multifunctional proteins. Using transient expression experiments, we have recently identified putative sequence motifs of African cassava mosaic virus (ACMV) CP involved in nuclear import (NLS) and export (NES) (Virology 286 (2001) 373). Here, we report on the effect of corresponding deletion mutants in the context of infecting viruses. Since NLS and NES may overlap with DNA binding and multimerisation domains, we have investigated their effect on viral infection, particularly, on particle formation. All deletion mutants were infectious in Nicotiana benthamiana when co-inoculated with DNA B, but poorly sap-transmissible. Some of the mutants showed reduced levels of viral single-stranded DNA (ssDNA), whereas the amount of double-stranded DNA (dsDNA) was not greatly affected. None of these CP mutants was able to produce stable virus particles. In contrast, viruses with CP fused to Flag epitopes at the N- or C-terminus (CP:Flag or Flag:CP) were readily sap-transmissible and formed amorphous nucleoprotein particles but only few geminate structures. The relevance of the identified sequences in replicating viruses with reference to nuclear import and export as well as to particle stability and DNA binding is discussed.


Asunto(s)
Proteínas de la Cápside/genética , Geminiviridae/patogenicidad , Regulación Viral de la Expresión Génica , Señales de Localización Nuclear/genética , Eliminación de Secuencia , Virión/metabolismo , Secuencia de Aminoácidos , Proteínas de la Cápside/química , Geminiviridae/genética , Geminiviridae/fisiología , Datos de Secuencia Molecular , Enfermedades de las Plantas/virología , Hojas de la Planta/virología , Nicotiana/virología
16.
J Gen Virol ; 82(Pt 3): 673-676, 2001 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-11172110

RESUMEN

Transgenic Nicotiana benthamiana plants harbouring a defective interfering (DI) DNA of African cassava mosaic virus (ACMV) and control plants were inoculated with ACMV. Virus particles were purified from infected plants, separated in sucrose gradients and fractions were analysed by Southern blotting. Transgenic plant-derived virus particles taken from the top fractions of sucrose gradients contained DI DNA, middle fractions contained a mixture of genomic and DI DNA and bottom fractions contained a mixture of multimeric, genomic and DI DNA. Virus particles from selected top, middle and bottom fractions were analysed by electron microscopy. In fractions containing only DI DNA, isometric particles of 18-20 nm were detected. In fractions containing DI DNA as well as genomic size DNA, isometric and geminate particles were found. Fractions containing multimeric size DNA were found to comprise particles consisting of three subunits adjacent to geminate particles. From these data, it is concluded that the size of encapsidated DNA determines the multiplicity of ACMV particles.


Asunto(s)
ADN de Cadena Simple/fisiología , Geminiviridae/fisiología , Manihot/virología , África , ADN de Cadena Simple/química , Geminiviridae/genética , Geminiviridae/ultraestructura , Tamaño de la Partícula , Plantas Modificadas Genéticamente , Plantas Tóxicas , Nicotiana , Virión/fisiología , Virión/ultraestructura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...