Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Acoust Soc Am ; 147(3): 1392, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-32237839

RESUMEN

Broadband data acquired during the Modal Mapping Experiment (MOMAX) V experiment are used to invert simultaneously for the three-dimensional (3D) water column sound speed profiles and the compressional wave speed and density profiles of the seabed in shallow waters off the coast of New Jersey. Linear Frequency Modulation sweep signals in the band 50-300 Hz are transmitted from a nearly stationary source at several discrete positions to a set of freely drifting receivers. Mode travel times are estimated from the signals acquired by the drifting buoys, and these are then used as input data in an inversion algorithm that estimates the acoustic properties of the water column and sediments. The resulting 3D compressional wave speed profiles in the seabed are generally consistent with the one-dimensional profile obtained during the narrowband component of MOMAX V, as well as the results from other experiments in the same area. The validity of the inversion results has also been assessed by the ability of the inverted model to predict the fields measured during the narrowband experiments.

2.
J Acoust Soc Am ; 135(6): 3316-26, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24907795

RESUMEN

Estimates of the spatial and temporal variability of ocean sound speed on the New Jersey shelf were obtained using acoustic signals measured by a set of freely drifting buoys. The range- and time-dependent inversion problem is computationally intensive and a linearized perturbative algorithm was applied to obtain results in an efficient manner. The inversion algorithm uses estimates of modal travel time to determine sound speed as a function of range and depth. In order to handle the high volume of data associated with the acoustic sensing network, the modal travel time estimation process was automated using an adaptive time-frequency signal processing method known as time-warping. Time-warping is a model-based transform that converts the frequency-dependent modal arrivals to monotones in the warped domain where they can be easily filtered. The data analyzed in this paper were collected on 16 March 2011 on the New Jersey shelf when the ocean was relatively well-mixed. While the observed sound-speed variations are small, both spatial and temporal trends are observed in the results. Furthermore, the estimated sound-speed profiles show good agreement with temporally and spatially collocated measurements.

3.
Sci Rep ; 2: 437, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22666540

RESUMEN

In recent years, the topic of noise in the sea and its effects on marine mammals has attracted considerable attention from both the scientific community and the general public. Since marine mammals rely heavily on acoustics as a primary means of communicating, navigating, and foraging in the ocean, any change in their acoustic environment may have an impact on their behavior. Specifically, a growing body of literature suggests that low-frequency, ambient noise levels in the open ocean increased approximately 3.3 dB per decade during the period 1950-2007. Here we show that this increase can be attributed primarily to commercial shipping activity, which in turn, can be linked to global economic growth. As a corollary, we conclude that ambient noise levels can be directly related to global economic conditions. We provide experimental evidence supporting this theory and discuss its implications for predicting future noise levels based on global economic trends.


Asunto(s)
Percepción Auditiva/fisiología , Biología Marina/economía , Ruido , Vocalización Animal/fisiología , Animales , Conservación de los Recursos Naturales/economía , Ecosistema , Humanos , Océanos y Mares , Océano Pacífico , Navíos , Espectrografía del Sonido , Factores de Tiempo , Movimientos del Agua
4.
J Acoust Soc Am ; 123(2): 667-78, 2008 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-18247871

RESUMEN

This paper introduces a perturbative inversion algorithm for determining sea floor acoustic properties, which uses modal amplitudes as input data. Perturbative inverse methods have been used in the past to estimate bottom acoustic properties in sediments, but up to this point these methods have used only the modal eigenvalues as input data. As with previous perturbative inversion methods, the one developed in this paper solves the nonlinear inverse problem using a series of approximate, linear steps. Examples of the method applied to synthetic and experimental data are provided to demonstrate the method's feasibility. Finally, it is shown that modal eigenvalue and amplitude perturbation can be combined into a single inversion algorithm that uses all of the potentially available modal data.

5.
J Acoust Soc Am ; 123(2): 658-66, 2008 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-18247870

RESUMEN

The influence of water column variability on low-frequency, shallow water geoacoustic inversion results is considered. The data are estimates of modal eigenvalues obtained from measurements of a point source acoustic field using a horizontal aperture array in the water column. The inversion algorithm is based on perturbations to a background waveguide model with seabed properties consistent with the measured eigenvalues. Water column properties in the background model are assumed to be known, as would be obtained from conductivity, temperature, and depth measurements. The scope of this work in addressing the impact of water column variability on inversion is twofold. Range-dependent propagation effects as they pertain to eigenvalue estimation are first considered. It is shown that mode coupling is important even for weak internal waves and can enhance modal eigenvalue estimates. Second, the effect of the choice of background sound speed profile in the water column is considered for its impact on the estimated bottom acoustic properties. It is shown that a range-averaged sound velocity profile yields the best geoacoustic parameter estimates.

6.
J Acoust Soc Am ; 113(6): 3117-33, 2003 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-12822784

RESUMEN

Ultralow frequency (0.02-2 Hz) acoustic ambient noise was monitored from January to April 1991 at six ocean bottom stations off the eastern U.S. coast. The depths of the stations ranged from about 100 m to 2500 m. The measured spectra are in good agreement with predictions made using Cato's theory [J. Acoust. Soc. Am. 89, 1076-1095 (1991)] for noise generation by surface-wave orbital motion after extending the calculations to incorporate horizontally stratified environments. Contributions from both the linear, single-frequency (virtual monopole) and the nonlinear, double-frequency (dipole) mechanisms are clearly recognizable in the data. The predictions make use of directional wave data obtained from surface buoys deployed during the SWADE experiment and an ocean bottom model derived from compressional wave speed data measured during the EDGE deep seismic reflection survey. The results demonstrate conclusively that nonlinear surface-wave interactions are the dominant mechanism for generating deep-ocean ULF noise in the band 0.2-0.7 Hz.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA