Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 83
Filtrar
1.
Int J Mol Sci ; 25(15)2024 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-39125703

RESUMEN

Hypertrophic cardiomyopathy (HCM) is a genetic disease characterized by unexplained left ventricular hypertrophy (LVH), diastolic dysfunction, and increased sudden-death risk. Early detection of the phenotypic expression of the disease in genetic carriers without LVH (Gen+/Phen-) is crucial for emerging therapies. This clinical study aims to identify echocardiographic predictors of phenotypic development in Gen+/Phen-. Sixteen Gen+/Phen- (one subject with troponin T, six with myosin heavy chain-7, and nine with myosin-binding protein C3 mutations), represented the study population. At first and last visit we performed comprehensive 2D speckle-tracking strain echocardiography. During a follow-up of 8 ± 5 years, five carriers developed LVH (LVH+). At baseline, these patients were older than those who did not develop LVH (LVH-) (30 ± 8 vs. 15 ± 8 years, p = 0.005). LVH+ had reduced peak global strain rate during the isovolumic relaxation period (SRIVR) (0.28 ± 0.05 vs. 0.40 ± 0.11 1/s, p = 0.048) and lower global longitudinal strain (GLS) (-19.8 ± 0.4 vs. -22.3 ± 1.1%; p < 0.0001) than LVH- at baseline. SRIVR and GLS were not correlated with age (overall, p > 0.08). This is the first HCM study investigating subjects before they manifest clinically significant or relevant disease burden or symptomatology, comparing at baseline HCM Gen+/Phen- subjects who will develop LVH with those who will not. Furthermore, we identified highly sensitive, easily obtainable, age- and load-independent echocardiographic predictors of phenotype development in HCM gene carriers who may undergo early preventive treatment.


Asunto(s)
Cardiomiopatía Hipertrófica , Ecocardiografía , Hipertrofia Ventricular Izquierda , Mutación , Humanos , Masculino , Femenino , Ecocardiografía/métodos , Hipertrofia Ventricular Izquierda/genética , Hipertrofia Ventricular Izquierda/diagnóstico por imagen , Hipertrofia Ventricular Izquierda/etiología , Adulto , Cardiomiopatía Hipertrófica/genética , Cardiomiopatía Hipertrófica/diagnóstico por imagen , Persona de Mediana Edad , Adolescente , Cadenas Pesadas de Miosina/genética , Troponina T/genética , Heterocigoto , Proteínas Portadoras/genética , Adulto Joven , Fenotipo , Miosinas Cardíacas/genética
2.
Artículo en Inglés | MEDLINE | ID: mdl-39082327

RESUMEN

INTRODUCTION: Early-onset atrial fibrillation (AF) has already been observed in approximately 2% of patients with genetically proven long QT syndrome (LQTS). This frequency is higher than population-based estimates of early-onset AF. However, the concomitant expression of AF in LQTS is likely underestimated. The purpose of this study was to examine the clinical presentation, genetic background, and outcomes of a cohort of patients with LQTS and early-onset AF referred to a single tertiary center. METHODS: Twenty-seven patients diagnosed with congenital LQTS were included in the study based on the documentation of early-onset (age ≤50 years) clinical or subclinical AF episodes in all available medical records, including standard electrocardiograms, wearable monitor or cardiac implantable electronic devices. RESULTS: Seventeen patients experienced clinical AF during the follow-up period. Subclinical AF was detected in 10 patients through insertable or wearable cardiac monitors. In our series, the mean heart rate during AF episodes was found to be relatively low despite the patients' young age and the low or minimal effective doses of beta-blockers used for QTc interval control. All patients exhibiting LQTS and early-onset AF were genotype positive, carrying mutations in the KCNQ1 (66%), KCNH2, KCNE1, and SCN5A genes. Notably, most of these patients carried the same p.(R231C) mutation in the KCNQ1 gene (59%) and were from the same families, suggesting concurrent expression of familial AF and LQTS. CONCLUSION: LQTS patients are prone to developing clinical and subclinical AF, even at a younger age. The occurrence of early-onset AF in the LQTS population could be more frequent than previously assumed. AF should be considered as a potential dysrhythmia related to LQTS. Our study emphasizes the importance of carefully researching clinical and/or subclinical episodes of AF through strict heart rhythm monitoring in the LQTS population.

3.
J Clin Med ; 13(13)2024 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-38999502

RESUMEN

Introduction: The aim of this study was to evaluate the age at onset, clinical course, and patterns of left ventricular (LV) remodelling during follow-up in children and young patients with hypertrophic cardiomyopathy (HCM). Methods: We included consecutive patients with sarcomeric or non-syndromic HCM below 18 years old. Three pre-specified patterns of LV remodelling were assessed: maximal LV wall thickness (MLVWT) thickening; MLVWT thinning with preserved LV ejection fraction; and MLVWT thinning with progressive reduction in LV ejection fraction (hypokinetic end-stage evolution). Results: Fifty-three patients with sarcomeric/non-syndromic HCM (mean age 9.4 ± 5.5 years, 68% male) fulfilled the inclusion criteria. In total, 32 patients (60%) showed LV remodelling: 3 patients (6%) exhibited MLVWT thinning; 16 patients (30%) showed MLVWT thickening; and 13 patients (24%) progressed to hypokinetic end-stage HCM. Twenty-one patients (40%) had no LV remodelling during follow-up. In multivariate analysis, MLVWT was a predictor of the hypokinetic end-stage remodelling pattern during follow-up (OR 1.17 [95%CI 1.01-1.36] per 1 mm increase, p-value 0.043), regardless of sarcomeric variants and New York Heart Association class. Two patients with sarcomeric HCM, showing a pattern of MLVWT regression during childhood, experienced progression during adolescence. Conclusions: Different patterns of LV remodelling were observed in a cohort of children with sarcomeric/non-syndromic HCM. Interestingly, a pattern of progressive MLVWT thinning during childhood, with new progression of MLVWT during adolescence, was noted. A better understanding of the remodelling mechanisms in children with sarcomeric HCM may be relevant to defining the timing and possible efficacy of new targeted therapies in the preclinical stage of the disease.

4.
Mol Genet Metab Rep ; 40: 101116, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39055105

RESUMEN

3-methylcrotonyl-CoA carboxylase deficiency (3MCCD) is a hereditary disorder of leucine catabolism caused by pathogenetic variants in the MCCC1 or MCCC2 genes. Typically diagnosed through newborn screening (NBS), 3MCCD is characterized by elevation of 3-hydroxyisovalerylcarnitine (C5OH) in blood as well as increased excretion of 3-methylcrotonylglycine (3-MCG) in urine. While most diagnosed children remain asymptomatic, data on adults are scarce. To date, only 39 molecularly confirmed adult individuals have been reported, all being mothers diagnosed subsequent to their child NBS results. Herein, we present a 36-year-old asymptomatic man who was incidentally diagnosed with 3MCCD following his son NBS recall. Molecular analysis revealed compound heterozygosity for two pathogenic variants in the MCCC1 gene. This is the first molecularly confirmed adult man with 3MCCD reported. This case highlights the need for additional longitudinal follow-up data on individuals with 3MCCD to clarify the clinical significance of this condition and guide clinical practice, including NBS strategy.

6.
Genes (Basel) ; 14(10)2023 09 29.
Artículo en Inglés | MEDLINE | ID: mdl-37895240

RESUMEN

Intense physical activity can induce metabolic changes that modify specific biochemical biomarkers. In this scenario, the purpose of our study was to evaluate how intense physical activity can affect oxidative metabolism. Following this, fifteen professional basketball players and fifteen sedentary controls were recruited and subjected to two samplings of serum and urine in the pre-season (September) and two months after the start of the competitive season (November). Our results have shown an increase in athletes compared to controls in CK and LDH in September (respectively, p-value 0.003 and p-value < 0.001) and in November (both p-value < 0.001), whereas ALT is increased only in November (p-value 0.09). GGT serum levels were decreased in athletes compared to controls in both months (in September p-value 0.001 and in November p-value < 0.001). A gene expression analysis, carried out using RT-PCR, has revealed that IL-2, IL-6, IL-8, xCT and GCLM are increased in athletes in both months (p-value < 0.0001), while IL-10 and CHAC1 are increased only in September if compared to the controls (respectively, p-value 0.040 and p-value < 0.001). In conclusion, physical activity creates an adaptation of the systems involved in oxidative metabolism but without causing damage to the liver or kidney. This information could be of help to sports doctors for the prevention of injuries and illnesses in professional athletes for the construction of the athlete's passport.


Asunto(s)
Antioxidantes , Baloncesto , Humanos , Antioxidantes/metabolismo , Atletas , Ejercicio Físico , Riñón/metabolismo
7.
Artículo en Inglés | MEDLINE | ID: mdl-37833437

RESUMEN

Hypertrophic cardiomyopathy (HCM) is mainly caused by sarcomeric mutations which may affect myocardial mechano-energetic efficiency (MEE). We investigated the effects of sarcomeric mutations on MEE. A non-invasive pressure/volume (P/V) analysis was performed. We included 49 genetically screened HCM patients. MEEi was calculated as the ratio between stroke volume and heart rate normalized by LV mass. Fifty-seven percent (57%) HCM patients carried a sarcomeric mutation. Patients with and without sarcomeric mutations had similar LV ejection fraction, heart rate, LV mass, and LV outflow gradient. Younger age at diagnosis, family history of HCM, and lower MEEi were associated with presence of sarcomeric mutation (p = 0.017; p = 0.001 and p = 0.0001, respectively). Lower MEEi in HCM with sarcomeric mutation is not related to significant differences on filling pressure as shown on P/V analysis. Sarcomeric mutations determine a reduction of the LV pump performance as estimated by MEEi in HCM. Lower MEEi may predict a positive genetic analysis.

8.
Int J Mol Sci ; 24(15)2023 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-37569632

RESUMEN

Acute or intense exercise can result in metabolic imbalances, muscle injuries, or reveal hidden disorders. Laboratory medicine in sports is playing an increasingly crucial role in monitoring athletes' health conditions. In this study, we designed an integrated approach to explore the causes of a deep venous thrombosis event in an elite basketball player. Since the complete blood count revealed a marked platelet count (838 × 103 µL), and thrombophilia screening tests did not reveal any significant alteration, we evaluated the thrombin generation, which highlights a state of hypercoagulability. First-level haemostasis exams showed only a slight prolongation of the activated Partial Thromboplastin Time (aPTT). Thus, screening tests for von Willebrand Disease showed a reduction in vWF parameters. Therefore, we directed our hypothesis towards a diagnosis of acquired von Willebrand disease secondary to Essential Thrombocythemia (ET). To confirm this hypothesis and highlight the molecular mechanism underlying the observed phenotype, molecular tests were performed to evaluate the presence of the most common mutations associated with ET, revealing a 52-bp deletion in the coding region of CALR exon 9. This case report highlights the importance of an integrated approach to monitoring the athletes' health status to personalise training and treatments, thus avoiding the appearance of diseases and injuries that, if underestimated, can undermine the athlete's life.


Asunto(s)
Baloncesto , Trombocitemia Esencial , Trombofilia , Trombosis de la Vena , Enfermedades de von Willebrand , Humanos , Trombofilia/complicaciones , Trombosis de la Vena/genética , Atletas , Factor de von Willebrand/metabolismo
9.
Genes (Basel) ; 14(5)2023 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-37239340

RESUMEN

BACKGROUND: the deficiency of 5,10-Methylenetetrahydrofolate reductase (MTHFR) constitutes a rare and severe metabolic disease and is included in most expanded newborn screening (NBS) programs worldwide. Patients with severe MTHFR deficiency develop neurological disorders and premature vascular disease. Timely diagnosis through NBS allows early treatment, resulting in improved outcomes. METHODS: we report the diagnostic yield of genetic testing for MTHFR deficiency diagnosis, in a reference Centre of Southern Italy between 2017 and 2022. MTHFR deficiency was suspected in four newborns showing hypomethioninemia and hyperhomocysteinemia; otherwise, one patient born in pre-screening era showed clinical symptoms and laboratory signs that prompted to perform genetic testing for MTHFR deficiency. RESULTS: molecular analysis of the MTHFR gene revealed a genotype compatible with MTHFR deficiency in two NBS-positive newborns and in the symptomatic patient. This allowed for promptly beginning the adequate metabolic therapy. CONCLUSIONS: our results strongly support the need for genetic testing to quickly support the definitive diagnosis of MTHFR deficiency and start therapy. Furthermore, our study extends knowledge of the molecular epidemiology of MTHFR deficiency by identifying a novel mutation in the MTHFR gene.


Asunto(s)
Homocistinuria , Metilenotetrahidrofolato Reductasa (NADPH2) , Humanos , Recién Nacido , Metilenotetrahidrofolato Reductasa (NADPH2)/genética , Homocistinuria/diagnóstico , Homocistinuria/genética , Pruebas Genéticas , Diagnóstico Precoz
10.
Genes (Basel) ; 14(5)2023 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-37239447

RESUMEN

BACKGROUND: Next-generation sequencing (NGS) technology is revolutionizing diagnostic screening for mitochondrial diseases (MDs). Moreover, an investigation by NGS still requires analyzing the mitochondrial genome and nuclear genes separately, with limitations in terms of time and costs. We describe the validation and implementation of a custom blended MITOchondrial-NUCLEAR (MITO-NUCLEAR) assay for the simultaneous identification of genetic variants both in whole mtDNA and in nuclear genes included in a clinic exome panel. Furthermore, the MITO-NUCLEAR assay, implemented in our diagnostic process, has allowed us to arrive at a molecular diagnosis in a young patient. METHODS: Massive sequencing strategy was applied for the validation experiments, performed using multiple tissues (blood, buccal swab, fresh tissue, tissue from slide, and formalin-fixed paraffin-embedded tissue section) and two different blend-in ratios of the mitochondrial probes: nuclear probes; 1:900 and 1:300. RESULTS: Data suggested that 1:300 was the optimal probe dilution, where 100% of the mtDNA was covered at least 3000×, the median coverage was >5000×, and 93.84% of nuclear regions were covered at least 100×. CONCLUSIONS: Our custom Agilent SureSelect MITO-NUCLEAR panel provides a potential "one-step" investigation that may be applied to both research and genetic diagnosis of MDs, allowing the simultaneous discovery of nuclear and mitochondrial mutations.


Asunto(s)
Enfermedades Mitocondriales , Humanos , Enfermedades Mitocondriales/diagnóstico , Enfermedades Mitocondriales/genética , Mitocondrias/genética , ADN Mitocondrial/genética , Mutación , Secuenciación de Nucleótidos de Alto Rendimiento/métodos
11.
Int J Mol Sci ; 24(10)2023 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-37240454

RESUMEN

Cardiomyopathies are mostly determined by genetic mutations affecting either cardiac muscle cell structure or function. Nevertheless, cardiomyopathies may also be part of complex clinical phenotypes in the spectrum of neuromuscular (NMD) or mitochondrial diseases (MD). The aim of this study is to describe the clinical, molecular, and histological characteristics of a consecutive cohort of patients with cardiomyopathy associated with NMDs or MDs referred to a tertiary cardiomyopathy clinic. Consecutive patients with a definitive diagnosis of NMDs and MDs presenting with a cardiomyopathy phenotype were described. Seven patients were identified: two patients with ACAD9 deficiency (Patient 1 carried the c.1240C>T (p.Arg414Cys) homozygous variant in ACAD9; Patient 2 carried the c.1240C>T (p.Arg414Cys) and the c.1646G>A (p.Ar549Gln) variants in ACAD9); two patients with MYH7-related myopathy (Patient 3 carried the c.1325G>A (p.Arg442His) variant in MYH7; Patient 4 carried the c.1357C>T (p.Arg453Cys) variant in MYH7); one patient with desminopathy (Patient 5 carried the c.46C>T (p.Arg16Cys) variant in DES); two patients with mitochondrial myopathy (Patient 6 carried the m.3243A>G variant in MT-TL1; Patient 7 carried the c.253G>A (p.Gly85Arg) and the c.1055C>T (p.Thr352Met) variants in MTO1). All patients underwent a comprehensive cardiovascular and neuromuscular evaluation, including muscle biopsy and genetic testing. This study described the clinical phenotype of rare NMDs and MDs presenting as cardiomyopathies. A multidisciplinary evaluation, combined with genetic testing, plays a main role in the diagnosis of these rare diseases, and provides information about clinical expectations, and guides management.


Asunto(s)
Cardiomiopatías , Cardiomiopatía Hipertrófica , Enfermedades Mitocondriales , Enfermedades Musculares , Humanos , Cardiomiopatías/genética , Cardiomiopatías/diagnóstico , Enfermedades Mitocondriales/diagnóstico , Enfermedades Mitocondriales/genética , Enfermedades Musculares/diagnóstico , Enfermedades Musculares/genética , Mutación , Fenotipo
13.
J Clin Med ; 12(4)2023 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-36836107

RESUMEN

The term arrhythmogenic cardiomyopathy (ACM) describes a large spectrum of myocardial diseases characterized by progressive fibrotic or fibrofatty replacement, which gives the substrate for the occurrence of ventricular tachyarrhythmias and the development of ventricular dysfunction. This condition may exclusively affect the left ventricle, leading to the introduction of the term arrhythmogenic left ventricular cardiomyopathy (ALVC). The clinical features of ALVC are progressive fibrotic replacement with the absence or mild dilation of the LV and the occurrence of ventricular arrhythmias within the left ventricle. In 2019, the diagnostic criteria for the diagnosis of ALVC, based on family history and clinical, electrocardiographic, and imaging features, have been proposed. However, since the significant clinical and imaging overlap with other cardiac diseases, genetic testing with the demonstration of a pathogenic variant in an ACM-related gene is required for diagnostic confirmation. In ALVC, the multimodality imaging approach comprises different imaging techniques, such as echocardiography, cardiac magnetic resonance, and cardiac nuclear imaging. It provides essential information for the diagnosis, differential diagnosis, sudden cardiac death risk stratification, and management purposes. This review aims to elucidate the current role of the different multimodality imaging techniques in patients with ALVC.

14.
Biomolecules ; 12(10)2022 10 03.
Artículo en Inglés | MEDLINE | ID: mdl-36291626

RESUMEN

The diffusion of next-generation sequencing (NGS)-based approaches allows for the identification of pathogenic mutations of cardiomyopathies and channelopathies in more than 200 different genes. Since genes considered uncommon for a clinical phenotype are also now included in molecular testing, the detection rate of disease-causing variants has increased. Here, we report the prevalence of genetic variants detected by using a NGS custom panel in a cohort of 133 patients with inherited cardiomyopathies (n = 77) or channelopathies (n = 56). We identified 82 variants, of which 50 (61%) were identified in genes without a strong or definitive evidence of disease association according to the NIH-funded Clinical Genome Resource (ClinGen; "uncommon genes"). Among these, 35 (70%) were variants of unknown significance (VUSs), 13 (26%) were pathogenic (P) or likely pathogenic (LP) mutations, and 2 (4%) benign (B) or likely benign (LB) variants according to American College of Medical Genetics (ACMG) classifications. These data reinforce the need for the screening of uncommon genes in order to increase the diagnostic sensitivity of the genetic testing of inherited cardiomyopathies and channelopathies by allowing for the identification of mutations in genes that are not usually explored due to a currently poor association with the clinical phenotype.


Asunto(s)
Cardiomiopatías , Canalopatías , Humanos , Canalopatías/genética , Prevalencia , Secuenciación de Nucleótidos de Alto Rendimiento , Cardiomiopatías/genética , Pruebas Genéticas
15.
Front Pediatr ; 10: 895921, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36147814

RESUMEN

Introduction: Short/branched-chain acyl-CoA dehydrogenase deficiency (SBCADD) is an inherited disorder of L-isoleucine metabolism due to mutations in the ACADSB gene. The role of current diagnostic biomarkers [i.e., blood 2-methylbutyrylcarnitine (C5) and urine 2-methylbutyrylglycine (2MBG)] in patient monitoring and the effects of proposed treatments remain uncertain as follow-data are lacking. This study presents first systematic longitudinal biochemical assessment in SBCADD patients. Methods: A retrospective, observational single-center study was conducted on newborns born between 2017 and 2020 and suspected with SBCADD. Biochemical, molecular, clinical and dietary data collected upon NBS recall and during the subsequent follow-up were recorded. Results: All enrolled subjects (n = 10) received adequate protein intake and L-carnitine supplementation. Nine subjects were diagnosed with SBCADD. During the follow-up [median: 20.5 (4-40) months] no patient developed symptoms related to SBCADD. No patient normalized serum C5 and urine 2MBG values. In 7/9 SBCADD patients mean serum C5 values decreased or stabilized compared to their first serum C5 value. A major increase in serum C5 values was observed in two patients after L-carnitine discontinuation and during intercurrent illness, respectively. Urine 2MBG values showed moderate intra-patient variability. Discussion: The relatively stable serum C5 values observed during L-carnitine supplementation together with C5 increase occurring upon L-carnitine discontinuation/intercurrent illness may support the value of serum C5 as a monitoring biomarker and the benefit of this treatment in SBCADD patients. The role of urine 2MBG in patient monitoring remains uncertain. As all patients were asymptomatic, no association between biochemical parameters and clinical phenotype could be investigated in this study.

16.
Int J Neonatal Screen ; 8(3)2022 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-35997437

RESUMEN

Newborn screening (NBS) for inborn errors of metabolism is one of the most advanced tools for secondary prevention in medicine, as it allows early diagnosis and prompt treatment initiation. The expanded newborn screening was introduced in Italy between 2016 and 2017 (Law 167/2016; DM 13 October 2016; DPCM 12-1-2017). A total of 1,586,578 infants born in Italy were screened between January 2017 and December 2020. For this survey, we collected data from 15 Italian screening laboratories, focusing on the metabolic disorders identified by tandem mass spectrometry (MS/MS) based analysis between January 2019 and December 2020. Aminoacidemias were the most common inborn errors in Italy, and an equal percentage was observed in detecting organic acidemias and mitochondrial fatty acids beta-oxidation defects. Second-tier tests are widely used in most laboratories to reduce false positives. For example, second-tier tests for methylmalonic acid and homocysteine considerably improved the screening of CblC without increasing unnecessary recalls. Finally, the newborn screening allowed us to identify conditions that are mainly secondary to a maternal deficiency. We describe the goals reached since the introduction of the screening in Italy by exchanging knowledge and experiences among the laboratories.

17.
Genet Med ; 24(8): 1653-1663, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35511137

RESUMEN

PURPOSE: Emerging evidence suggest that infection-dependent hyperactivation of complement system (CS) may worsen COVID-19 outcome. We investigated the role of predicted high impact rare variants - referred as qualifying variants (QVs) - of CS genes in predisposing asymptomatic COVID-19 in elderly individuals, known to be more susceptible to severe disease. METHODS: Exploiting exome sequencing data and 56 CS genes, we performed a gene-based collapsing test between 164 asymptomatic subjects (aged ≥60 years) and 56,885 European individuals from the Genome Aggregation Database. We replicated this test comparing the same asymptomatic individuals with 147 hospitalized patients with COVID-19. RESULTS: We found an enrichment of QVs in 3 genes (MASP1, COLEC11, and COLEC10), which belong to the lectin pathway, in the asymptomatic cohort. Analyses of complement activity in serum showed decreased activity of lectin pathway in asymptomatic individuals with QVs. Finally, we found allelic variants associated with asymptomatic COVID-19 phenotype and with a decreased expression of MASP1, COLEC11, and COLEC10 in lung tissue. CONCLUSION: This study suggests that genetic rare variants can protect from severe COVID-19 by mitigating the activity of lectin pathway and prothrombin. The genetic data obtained through ES of 786 asymptomatic and 147 hospitalized individuals are publicly available at http://espocovid.ceinge.unina.it/.


Asunto(s)
COVID-19 , Anciano , COVID-19/genética , Colectinas/genética , Colectinas/metabolismo , Células Germinativas , Humanos , Lectinas/genética , SARS-CoV-2 , Secuenciación del Exoma
18.
Int J Mol Sci ; 23(7)2022 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-35408809

RESUMEN

Pregnancy is characterized by significant immunological changes and a cytokine profile, as well as vitamin deficiencies that can cause problems for the correct development of a fetus. Defensins are small antimicrobial peptides that are part of the innate immune system and are involved in several biological activities. Following that, this study aims to compare the levels of various cytokines and to investigate the role of defensins between pregnant women with confirmed COVID-19 infection and pregnant women without any defined risk factor. TNF-α, TGF-ß, IL-2 and IL-10, ß-defensins, have been evaluated by gene expression in our population. At the same time, by ELISA assay IL-6, IL-8, defensin alpha 1, defensin beta 1 and defensin beta 4 have been measured. The data obtained show that mothers affected by COVID-19 have an increase in pro-inflammatory factors (TNF-α, TGF-ß, IL-2, IL-6, IL-8) compared to controls; this increase could generate a sort of "protection of the fetus" from virus attacks. Contemporarily, we have an increase in the anti-inflammatory cytokine IL-10 and an increase in AMPs, which highlights how the mother's body is responding to the viral attack. These results allow us to hypothesize a mechanism of "trafficking" of antimicrobial peptides from the mother to the fetus that would help the fetus to protect itself from the infection in progress.


Asunto(s)
COVID-19 , alfa-Defensinas , beta-Defensinas , Citocinas , Femenino , Humanos , Interleucina-10 , Interleucina-2 , Interleucina-6 , Interleucina-8 , Embarazo , Mujeres Embarazadas , Factor de Crecimiento Transformador beta , Factor de Necrosis Tumoral alfa
19.
Front Immunol ; 13: 845496, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35371100

RESUMEN

Background: Severe skeletal muscle damage has been recently reported in patients with SARS-CoV-2 infection and as a rare vaccination complication. Case summary: On Apr 28, 2021 a 68-year-old man who was previously healthy presented with an extremely severe rhabdomyolysis that occurred nine days following the first dose of SARS-CoV-2 ChAdOx1 nCov-19 vaccination. He had no risk factors, and denied any further assumption of drugs except for fermented red rice, and berberine supplement. The clinical scenario was complicated by a multi organ failure involving bone marrow, liver, lung, and kidney. For the rapid increase of the inflammatory markers, a cytokine storm was suspected and multi-target biologic immunosuppressive therapy was started, consisting of steroids, anakinra, and eculizumab, which was initially successful resulting in close to normal values of creatine phosphokinase after 17 days of treatment. Unfortunately, 48 days after the vaccination an accelerated phase of deterioration, characterized by severe multi-lineage cytopenia, untreatable hypotensive shock, hypoglycemia, and dramatic increase of procalcitonin (PCT), led to patient death. Conclusion: Physicians should be aware that severe and fatal rhabdomyolysis may occur after SARS-CoV2 vaccine administration.


Asunto(s)
COVID-19 , Rabdomiólisis , Trombocitopenia , Anciano , Vacunas contra la COVID-19/efectos adversos , ChAdOx1 nCoV-19 , Humanos , Masculino , Insuficiencia Multiorgánica/etiología , ARN Viral , Rabdomiólisis/etiología , SARS-CoV-2 , Vacunación/efectos adversos
20.
Artículo en Inglés | MEDLINE | ID: mdl-35162272

RESUMEN

Physical activity, combined with adequate nutrition, is considered a protective factor against cardiovascular disease, musculoskeletal disorders, and intestinal dysbiosis. Achieving optimal performance requires a significantly high energy expenditure, which must be correctly supplied to avoid the occurrence of diseases such as muscle injuries, oxidative stress, and heart pathologies, and a decrease in physical performance during competition. Moreover, in sports activities, the replenishment of water, vitamins, and minerals consumed during training is essential for safeguarding athletes' health. In this scenario, vitamins play a pivotal role in numerous metabolic reactions and some muscle biochemical adaptation processes induced by sports activity. Vitamins are introduced to the diet because the human body is unable to produce these micronutrients. The aim of this review is to highlight the fundamental role of vitamin supplementation in physical activity. Above all, we focus on the roles of vitamins A, B6, D, E, and K in the prevention and treatment of cardiovascular disorders, muscle injuries, and regulation of the microbiome.


Asunto(s)
Microbiota , Vitaminas , Atletas , Dieta , Humanos , Minerales , Miocardio/metabolismo , Vitaminas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA