Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ACS Sens ; 9(5): 2383-2394, 2024 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-38687178

RESUMEN

Oxygen plays a central role in aerobic metabolism, and while many approaches have been developed to measure oxygen concentration in biological environments over time, monitoring spatiotemporal changes in dissolved oxygen levels remains challenging. To address this, we developed a ratiometric core-shell organosilica nanosensor for continuous, real-time optical monitoring of oxygen levels in biological environments. The nanosensors demonstrate good steady state characteristics (KpSV = 0.40 L/mg, R2 = 0.95) and respond reversibly to changes in oxygen concentration in buffered solutions and report similar oxygen level changes in response to bacterial cell growth (Escherichia coli) in comparison to a commercial bulk optode-based sensing film. We further demonstrated that the oxygen nanosensors could be distributed within a growing culture of E. coli and used to record oxygen levels over time and in different locations within a static culture, opening the possibility of spatiotemporal monitoring in complex biological systems.


Asunto(s)
Escherichia coli , Oxígeno , Oxígeno/metabolismo , Oxígeno/análisis , Escherichia coli/metabolismo , Escherichia coli/aislamiento & purificación , Técnicas Biosensibles/métodos , Nanotecnología , Compuestos de Organosilicio/química
2.
Adv Healthc Mater ; : e2400171, 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38657207

RESUMEN

Strategies incorporating mesenchymal stromal cells (MSC), hydrogels and osteoinductive signals offer promise for bone repair. Osteoinductive signals such as growth factors face challenges in clinical translation due to their high cost, low stability and immunogenicity leading to interest in microRNAs as a simple, inexpensive and powerful alternative. The selection of appropriate miRNA candidates and their efficient delivery must be optimised to make this a reality. This study evaluated pro-osteogenic miRNAs and used porous silicon nanoparticles modified with polyamidoamine dendrimers (PAMAM-pSiNP) to deliver these to MSC encapsulated within gelatin-PEG hydrogels. miR-29b-3p, miR-101-3p and miR-125b-5p are strongly pro-osteogenic and are shown to target FASN and ELOVL4 in the fatty acid biosynthesis pathway to modulate MSC osteogenesis. Hydrogel delivery of miRNA:PAMAM-pSiNP complexes enhanced transfection compared to 2D. The osteogenic potential of hBMSC in hydrogels with miR125b:PAMAM-pSiNP complexes is evaluated. Importantly, a dual-effect on osteogenesis occurred, with miRNAs increasing expression of alkaline phosphatase (ALP) and Runt-related transcription factor 2 (RUNX2) whilst the pSiNPs enhanced mineralisation, likely via degradation into silicic acid. Overall, this work presents insights into the role of miRNAs and fatty acid signalling in osteogenesis, providing future targets to improve bone formation and a promising system to enhance bone tissue engineering.

3.
J Orthop Translat ; 43: 1-13, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37929240

RESUMEN

Background: High post-surgical failure rates following tendon injury generate high medical costs and poor patient recovery. Cell-based tendon tissue engineering has the potential to produce fully functional replacement tissue and provide new strategies to restore tendon function and healing. In this endeavour, the application of mesenchymal stromal cells (MSCs) encapsulated in biomaterial scaffolds has shown great promise. However, a consensus on optimal promotion of tenogenic differentiation of MSCs has yet to be reached, although growth factors and mechanical cues are generally acknowledged as important factors. Methods: In this study, we prepared a hydrogel cell culture system consisting of methacrylated poly(d,l-lactic acid-ethylene glycol-d,l-lactic acid) (P(LA-EG-LA)) and gelatin methacrylate (GelMA) to encapsulate human bone marrow-derived MSCs (hBMSCs). We further systematically investigated the influence of static and intermittent cyclic uniaxial strain mechanical stimulation, in combination with transforming growth factor-ß3 (TGF-ß3) supplementation, on tenogenic differentiation of hBMSCs. Results: Increased TGF-ß3 concentration upregulated the tenogenic genes Scleraxis (SCX) and collagen type I (COL1A1) but showed no effects on tenascin-c (TNC) and collagen type III (COL3A1) expression. Mechanical stimulation had no observable effect on gene expression, but intermittent cyclic uniaxial strain stimulation improved matrix deposition. Together, these data provide new insights into how TGF-ß3 and mechanical stimulation regulate MSC tenogenesis, with TGF-ß3 promoting the expression of key tenogenic genes whilst mechanical stimulation aided matrix deposition in the engineered tissue. Furthermore, intermittent cyclic uniaxial strain at 3% elongation and 0.33 â€‹Hz for 1 â€‹h/day showed improved matrix effects compared to static strain. Conclusion: Together, the most promising result for tenogenic differentiation of hBMSCs was identified as treatment with 5 â€‹ng/ml TGF-ß3 under intermittent cyclic uniaxial strain (3% strain; 0.33 â€‹Hz; 1 â€‹h/day). This knowledge is of importance for the development of an improved protocol for tenogenic differentiation of MSCs and thereby for tendon tissue engineering. The translational potential of this article: Tissue-engineered strategies for tendon repair require a consensus on the differentiation of mesenchymal stromal cells to tenocytes, which is currently lacking. This article provides a systematic investigation of two main tenogenic differentiation conditions to further development of a tenogenic differentiation protocol.

4.
ACS Biomater Sci Eng ; 9(11): 6024-6033, 2023 11 13.
Artículo en Inglés | MEDLINE | ID: mdl-37788301

RESUMEN

Microgels are microscale particles of hydrogel that can be laden with cells and used to create macroporous tissue constructs. Their ability to support cell-ECM and cell-cell interactions, along with the high levels of nutrient and metabolite exchange facilitated by their high surface area-to-volume ratio, means that they are attracting increasing attention for a variety of tissue regeneration applications. Here, we present methods for fabricating and modifying the structure of microfluidic devices using commonly available laboratory consumables including pipet tips and PTFE and silicon tubing to produce microgels. Different microfluidic devices realized the controlled generation of a wide size range (130-800 µm) of microgels for cell encapsulation. Subsequently, we describe the process of encapsulating mesenchymal stromal cells in microgels formed by photo-cross-linking of gelatin-norbornene and PEG dithiol. The introduced pipet-based chip offers simplicity, tunability, and versatility, making it easily assembled in most laboratories to effectively produce cell-laden microgels for various applications in tissue engineering.


Asunto(s)
Microgeles , Encapsulación Celular , Gelatina/química , Ingeniería de Tejidos/métodos , Hidrogeles/química
5.
Acta Biomater ; 168: 144-158, 2023 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-37422008

RESUMEN

Mesenchymal stromal cells (MSCs) have significant therapeutic potential due to their ability to differentiate into musculoskeletal lineages suitable for tissue-engineering, as well as the immunomodulatory and pro-regenerative effects of the paracrine factors that these cells secrete. Cues from the extracellular environment, including physical stimuli such as substrate stiffness, are strong drivers of MSC differentiation, but their effects upon MSC paracrine activity are not well understood. This study, therefore sought to determine the impact of substrate stiffness on the paracrine activity of MSCs, analysing both effects on MSC fate and their effect on T-cell and macrophage activity and angiogenesis. The data show that conditioned medium (CM) from MSCs cultured on 0.2 kPa (soft) and 100 kPa (stiff) polyacrylamide hydrogels have differing effects on MSC proliferation and differentiation, with stiff CM promoting proliferation whilst soft CM promoted differentiation. There were also differences in the effects upon macrophage phagocytosis and angiogenesis, with the most beneficial effects from soft CM. Analysis of the media composition identified differences in the levels of proteins including IL-6, OPG, and TIMP-2. Using recombinant proteins and blocking antibodies, we confirmed a role for OPG in modulating MSC proliferation with a complex combination of factors involved in the regulation of MSC differentiation. Together the data confirm that the physical microenvironment has an important influence on the MSC secretome and that this can alter the differentiation and regenerative potential of the cells. These findings can be used to tailor the culture environment for manufacturing potent MSCs for specific clinical applications or to inform the design of biomaterials that enable the retention of MSC activity after delivery into the body. STATEMENT OF SIGNIFICANCE: • MSCs cultured on 100 kPa matrices produce a secretome that boosts MSC proliferation • MSCs cultured on 0.2 kPa matrices produce a secretome that promotes MSC osteogenesis and adipogenesis, as well as angiogenesis and macrophage phagocytosis • IL-6 secretion is elevated in MSCs on 0.2 kPa substrates • OPG, TIMP-2, MCP-1, and sTNFR1 secretion are elevated in MSCs on 100 kPa substrates.


Asunto(s)
Trasplante de Células Madre Mesenquimatosas , Inhibidor Tisular de Metaloproteinasa-2 , Inhibidor Tisular de Metaloproteinasa-2/farmacología , Interleucina-6 , Diferenciación Celular , Ingeniería de Tejidos , Medios de Cultivo Condicionados/farmacología
6.
Biointerphases ; 17(6): 060801, 2022 11 07.
Artículo en Inglés | MEDLINE | ID: mdl-36344295

RESUMEN

The ability to create complex three-dimensional cellular models that can effectively replicate the structure and function of human organs and tissues in vitro has the potential to revolutionize medicine. Such models could facilitate the interrogation of developmental and disease processes underpinning fundamental discovery science, vastly accelerate drug development and screening, or even be used to create tissues for implantation into the body. Realization of this potential, however, requires the recreation of complex biochemical, biophysical, and cellular patterns of 3D tissues and remains a key challenge in the field. Recent advances are being driven by improved knowledge of tissue morphogenesis and architecture and technological developments in bioengineering and materials science that can create the multidimensional and dynamic systems required to produce complex tissue microenvironments. In this article, we discuss challenges for in vitro models of tissues and organs and summarize the current state-of-the art in biomaterials and bioengineered systems that aim to address these challenges. This includes both top-down technologies, such as 3D photopatterning, magnetism, acoustic forces, and cell origami, as well as bottom-up patterning using 3D bioprinting, microfluidics, cell sheet technology, or composite scaffolds. We illustrate the varying ways that these can be applied to suit the needs of different tissues and applications by focussing on specific examples of patterning the bone-tendon interface, kidney organoids, and brain cancer models. Finally, we discuss the challenges and future prospects in applying materials science and bioengineering to develop high-quality 3D tissue structures for in vitro studies.


Asunto(s)
Materiales Biocompatibles , Bioimpresión , Humanos , Materiales Biocompatibles/farmacología , Materiales Biocompatibles/química , Organoides , Impresión Tridimensional , Ingeniería de Tejidos/métodos , Células Madre
7.
Acta Biomater ; 145: 25-42, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35470075

RESUMEN

Tendons are integral to our daily lives by allowing movement and locomotion but are frequently injured, leading to patient discomfort and impaired mobility. Current clinical procedures are unable to fully restore the native structure of the tendon, resulting in loss of full functionality, and the weakened tissue following repair often re-ruptures. Tendon tissue engineering, involving the combination of cells with biomaterial scaffolds to form new tendon tissue, holds promise to improve patient outcomes. A key requirement for efficacy in promoting tendon tissue formation is the optimal differentiation of the starting cell populations, most commonly adult tissue-derived mesenchymal stem/stromal cells (MSCs), into tenocytes, the predominant cellular component of tendon tissue. Currently, a lack of consensus on the protocols for effective tenogenic differentiation is hampering progress in tendon tissue engineering. In this review, we discuss the current state of knowledge regarding human stem cell differentiation towards tenocytes and tendon tissue formation. Tendon development and healing mechanisms are described, followed by a comprehensive overview of the current protocols for tenogenic differentiation, including the effects of biochemical and biophysical cues, and their combination, on tenogenesis. Lastly, a synthesis of the key features of these protocols is used to design future approaches. The holistic evaluation of current knowledge should facilitate and expedite the development of efficacious stem cell tenogenic differentiation protocols with future impact in tendon tissue engineering. STATEMENT OF SIGNIFICANCE: The lack of a widely-adopted tenogenic differentiation protocol has been a major hurdle in the tendon tissue engineering field. Building on current knowledge on tendon development and tendon healing, this review surveys peer-reviewed protocols to present a holistic evaluation and propose a pathway to facilitate and expedite the development of a consensus protocol for stem cell tenogenic differentiation and tendon tissue engineering.


Asunto(s)
Células Madre Mesenquimatosas/citología , Traumatismos de los Tendones/terapia , Tendones/fisiología , Ingeniería de Tejidos , Adulto , Diferenciación Celular , Humanos , Células Madre Mesenquimatosas/metabolismo , Células Madre , Traumatismos de los Tendones/patología , Tendones/citología , Ingeniería de Tejidos/métodos , Ingeniería de Tejidos/tendencias
8.
Front Cell Dev Biol ; 10: 819726, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35237601

RESUMEN

Therapeutic benefits of mesenchymal stem cells (MSCs) are now widely believed to come from their paracrine signalling, i.e. secreted factors such as cytokines, chemokines, and extracellular vesicles (EVs). Cell-free therapy using EVs is an active and emerging field in regenerative medicine. Typical 2D cultures on tissue culture plastic is far removed from the physiological environment of MSCs. The application of 3D cell culture allows MSCs to adapt to their cellular environment which, in turn, influences their paracrine signalling activity. In this study we evaluated the impact of 3D MSCs culture on EVs secretion, cargo proteome composition, and functional assessment in immunomodulatory, anti-inflammatory and anti-fibrotic properties. MSC-EVs from 2D and 3D cultures expressed classical EV markers CD81, CD63, and CD9 with particle diameter of <100 nm. There were distinct changes in immunomodulatory potencies where 3D cultures exhibited reduced indoleamine 2,3-dioxygenase (IDO) activity and significantly reduced macrophage phagocytosis. Administration of 2D and 3D EVs following double dose bleomycin challenge in aged mice showed a marked increase of bodyweight loss in 3D group throughout days 7-28. Histopathological observations of lung tissues in 3D group showed increased collagen deposition, myofibroblast differentiation and leukocytes infiltrations. Assessment of lung mechanics showed 3D group did not improve lung function and instead exhibited increased resistance and tissue damping. Proteome profiling of MSC-EV composition revealed molecular enrichment of EV markers (compared to parental cells) and differential proteome between EVs from 2D and 3D culture condition associated with immune-based and fibrosis/extracellular matrix/membrane organization associated function. This study provides insight into distinct variation in EV protein composition dependent on the cellular microenvironment of the parental cells, which could have implications in their therapeutic effect and potency. Overall, this work suggests that EVs produced from 3D MSC cultures did not enhance typical MSC-EV properties expected from 2D cultures (immunomodulation, anti-fibrotic, anti-inflammatory). The outcome highlights critical differences between MSC-EVs obtained from different culture microenvironments, which should be considered when scaling up MSC culture for clinical manufacturing.

9.
Artículo en Inglés | MEDLINE | ID: mdl-35192344

RESUMEN

Cells sense and respond to a variety of physical cues from their surrounding microenvironment, and these are interpreted through mechanotransductive processes to inform their behavior. These mechanisms have particular relevance to stem cells, where control of stem cell proliferation, potency, and differentiation is key to their successful application in regenerative medicine. It is increasingly recognized that surface micro- and nanotopographies influence stem cell behavior and may represent a powerful tool with which to direct the morphology and fate of stem cells. Current progress toward this goal has been driven by combined advances in fabrication technologies and cell biology. Here, the capacity to generate precisely defined micro- and nanoscale topographies has facilitated the studies that provide knowledge of the mechanotransducive processes that govern the cellular response as well as knowledge of the specific features that can drive cells toward a defined differentiation outcome. However, the path forward is not fully defined, and the "bumpy road" that lays ahead must be crossed before the full potential of these approaches can be fully exploited. This review focuses on the challenges and opportunities in applying micro- and nanotopographies to dictate stem cell fate for regenerative medicine. Here, key techniques used to produce topographic features are reviewed, such as photolithography, block copolymer lithography, electron beam lithography, nanoimprint lithography, soft lithography, scanning probe lithography, colloidal lithography, electrospinning, and surface roughening, alongside their advantages and disadvantages. The biological impacts of surface topographies are then discussed, including the current understanding of the mechanotransductive mechanisms by which these cues are interpreted by the cells, as well as the specific effects of surface topographies on cell differentiation and fate. Finally, considerations in translating these technologies and their future prospects are evaluated.

10.
Biomaterials ; 279: 121214, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34736147

RESUMEN

Injectable hydrogels have been employed extensively as versatile materials for cartilage regeneration due to their excellent biocompatibility, tunable structure, and ability to accommodate bioactive factors, as well as their ability to be locally delivered via minimally invasive injection to fill irregular defects. More recently, in vitro and in vivo studies have revealed that processing these materials to produce cell-laden microgels can enhance cell-cell and cell-matrix interactions and boost nutrient and metabolite exchange. Moreover, these studies have demonstrated gene expression profiles and matrix regeneration that are superior compared to conventional injectable bulk hydrogels. As cell-laden microgels and their application in cartilage repair are moving closer to clinical translation, this review aims to present an overview of the recent developments in this field. Here we focus on the currently used biomaterials and crosslinking strategies, the innovative fabrication techniques being used for the production of microgels, the cell sources used, the signals used for induction of chondrogenic differentiation and the resultant biological responses, and the ability to create three-dimensional, functional cartilage tissues. In addition, this review also covers the current clinical approaches for repairing cartilage as well as specific challenges faced when attempting the regeneration of damaged cartilage tissue. New findings related to the macroporous nature of the structures formed by the assembled microgel building blocks and the novel use of microgels in 3D printing for cartilage tissue engineering are also highlighted. Finally, we outline the challenges and future opportunities for employing cell-laden microgels in clinical applications.


Asunto(s)
Microgeles , Cartílago , Condrogénesis , Hidrogeles , Regeneración , Ingeniería de Tejidos
11.
Front Chem ; 9: 728717, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34568279

RESUMEN

Reactive oxygen species (ROS) and dissolved oxygen play key roles across many biological processes, and fluorescent stains and dyes are the primary tools used to quantify these species in vitro. However, spatio-temporal monitoring of ROS and dissolved oxygen in biological systems are challenging due to issues including poor photostability, lack of reversibility, and rapid off-site diffusion. In particular, ROS monitoring is hindered by the short lifetime of ROS molecules and their low abundance. The combination of nanomaterials and fluorescent detection has led to new opportunities for development of imaging probes, sensors, and theranostic products, because the scaffolds lead to improved optical properties, tuneable interactions with cells and media, and ratiometric sensing robust to environmental drift. In this review, we aim to critically assess and highlight recent development in nanosensors and nanomaterials used for the detection of oxygen and ROS in biological systems, and their future potential use as diagnosis tools.

12.
Langmuir ; 37(21): 6578-6587, 2021 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-34009994

RESUMEN

Long-term stability and function are key challenges for optical nanosensors operating in complex biological environments. While much focus is rightly placed on issues related to specificity, sensitivity, reversibility, and response time, many nanosensors are not capable of transducing accurate results over prolonged time periods. Sensors could fail over time due to the degradation of scaffold material, degradation of signaling dyes and components, or a combination of both. It is critical to investigate how such degradative processes affect sensor output, as the consequences could be severe. Herein, we used fluorescent core-shell organosilica pH nanosensors as a model system, incubating them in a range of common aqueous solutions over time at different temperatures, and then searched for changes in fluorescence signal, particle size, and evidence of silica degradation. We found that these ratiometric nanosensors produced stable optical signals after aging for 30 days at 37 °C in standard saline buffers with and without 10% fetal bovine serum, and without any evidence of material degradation. Next, we evaluated their performance as real-time pH nanosensors in bacterial suspension cultures, observing a close agreement with a pH electrode for control nanosensors, yet observing obvious deviations in signal based on the aging conditions. The results show that while the organosilica scaffold does not degrade appreciably over time, careful selection of dyes and further systematic investigations into the effects of salt and protein levels are required to realize long-term stable nanosensors.

13.
Adv Sci (Weinh) ; 8(6): 2003186, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33747730

RESUMEN

Cells are able to perceive complex mechanical cues from their microenvironment, which in turn influences their development. Although the understanding of these intricate mechanotransductive signals is evolving, the precise roles of substrate microtopography in directing cell fate is still poorly understood. Here, UV nanoimprint lithography is used to generate micropillar arrays ranging from 1 to 10 µm in height, width, and spacing to investigate the impact of microtopography on mechanotransduction. Using mesenchymal stem cells (MSCs) as a model, stark pattern-specific changes in nuclear architecture, lamin A/C accumulation, chromatin positioning, and DNA methyltransferase expression, are demonstrated. MSC osteogenesis is also enhanced specifically on micropillars with 5 µm width/spacing and 5 µm height. Intriguingly, the highest degree of osteogenesis correlates with patterns that stimulated maximal nuclear deformation which is shown to be dependent on myosin-II-generated tension. The outcomes determine new insights into nuclear mechanotransduction by demonstrating that force transmission across the nuclear envelope can be modulated by substrate topography, and that this can alter chromatin organisation and impact upon cell fate. These findings have potential to inform the development of microstructured cell culture substrates that can direct cell mechanotransduction and fate for therapeutic applications in both research and clinical sectors.

14.
Biomacromolecules ; 21(12): 5323-5335, 2020 12 14.
Artículo en Inglés | MEDLINE | ID: mdl-33237736

RESUMEN

Microgels are emerging as an outstanding platform for tissue regeneration because they overcome issues associated with conventional bulk/macroscopic hydrogels such as limited cell-cell contact and cell communication and low diffusion rates. Owing to the enhanced mass transfer and injectability via a minimally invasive procedure, these microgels are becoming a promising approach for bone regeneration applications. Nevertheless, there still remains a huge gap between the understanding of how the hydrogel matrix composition can influence cell response and overall tissue formation when switching from bulk formats to microgel format, which is often neglected or rarely studied. Here, we fabricated polyethylene glycol-based microgels and bulk hydrogels incorporating gelatin and hyaluronic acid (HA), either individually or together, and assessed the impact of both hydrogel composition and format upon the osteogenic differentiation of encapsulated human bone marrow-derived mesenchymal stem cells (hBMSCs). Osteogenesis was significantly greater in microgels than bulk hydrogels for both gelatin alone (Gel) and gelatin HA composite (Gel:HA) hydrogels, as determined by the expression of Runt-related transcription factor (Runx2) and alkaline phosphatase (ALP) genes and mineral deposition. Interestingly, Gel and Gel:HA hydrogels behaved differently between bulk and microgel format. In bulk format, overall osteogenic outcomes were better in Gel:HA hydrogels, but in microgel format, while the level of osteogenic gene expression was equivalent between both compositions, the degree of mineralization was reduced in Gel:HA microgels. Investigation into the affinity of hydroxyapatite for the different matrix compositions indicated that the decreased mineralization of Gel:HA microgels was likely due to a low affinity of hydroxyapatite to bind to HA and support mineral deposition, which has a greater impact on microgels than bulk hydrogels. Together, these findings suggest that both hydrogel composition and format can determine the success of tissue formation and that there is a complex interplay of these two factors on both cell behavior and matrix deposition. This has important implications for tissue engineering, showing that hydrogel composition and geometry must be evaluated together when optimizing conditions for cell differentiation and tissue formation.


Asunto(s)
Células Madre Mesenquimatosas , Osteogénesis , Diferenciación Celular , Humanos , Hidrogeles , Ingeniería de Tejidos
15.
Biomater Sci ; 8(6): 1711-1725, 2020 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-31994552

RESUMEN

The encapsulation of cells into microgels is attractive for applications in tissue regeneration. While cells are protected against shear stress during injection, the assembly of microgels after injection into a tissue defect also forms a macroporous scaffold that allows effective nutrient transport throughout the construct. However, in most of current strategies that form microgel-based macroporous scaffold or higher-order structures, cells are seeded during or post the assembly process and not microencapsulated in situ. The objective of this study is to investigate the chondrogenic phenotype of microencapsulated fetal chondrocytes in a biocompatible, assembled microgel system vs. bulk gels and to test the stability of the constructs in vivo. Here, we demonstrate that cell microencapsulation leads to increased expression of cartilage-specific genes in a TGF-ß1-dependent manner. This correlates, as shown by histological staining, with the ability of microencapsulated cells to deposit cartilaginous matrix after migrating to the surface of the microgels, while keeping a macroscopic granular morphology. Implantation of precultured scaffolds in a subcutaneous mouse model results in vessel infiltration in bulk gels but not in assembled microgels, suggesting a higher stability of the matrix produced by the cells in the assembled microgel constructs. The cells are able to remodel the microgels as demonstrated by the gradual disappearance of the granular structure in vivo. The biocompatible microencapsulation and microgel assembly system presented in this article therefore hold great promise as an injectable system for cartilage repair.


Asunto(s)
Cartílago/metabolismo , Encapsulación Celular/métodos , Condrocitos/citología , Condrogénesis , Animales , Línea Celular , Condrocitos/metabolismo , Humanos , Ratones , Modelos Animales , Transducción de Señal , Andamios del Tejido , Factor de Crecimiento Transformador beta1/metabolismo
17.
Adv Sci (Weinh) ; 6(24): 1902326, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31871874

RESUMEN

Acoustic fields are capable of manipulating biological samples contained within the enclosed and highly controlled environment of a microfluidic chip in a versatile manner. The use of acoustic streaming to alter fluid flows and radiation forces to control cell locations has important clinical and life science applications. While there have been significant advances in the fundamental implementation of these acoustic mechanisms, there is a considerable lack of understanding of the associated biological effects on cells. Typically a single, simple viability assay is used to demonstrate a high proportion of living cells. However, the findings of this study demonstrate that acoustic exposure can inhibit cell attachment, decrease cell spreading, and most intriguingly increase cellular metabolic activity, all without any impact upon viability rates. This has important implications by showing that mortality studies alone are inadequate for the assessment of biocompatibility, but further demonstrates that physical manipulation of cells can also be used to influence their biological activity.

18.
ACS Nano ; 13(10): 11129-11143, 2019 10 22.
Artículo en Inglés | MEDLINE | ID: mdl-31580055

RESUMEN

The ability of mesenchymal stem cells to sense nanoscale variations in extracellular matrix (ECM) compositions in their local microenvironment is crucial to their survival and their fate; however, the underlying molecular mechanisms defining how such fates are temporally modulated remain poorly understood. In this work, we have utilized self-assembled block copolymer surfaces to present nanodomains of an adhesive peptide found in many ECM proteins at different lateral spacings (from 30 to 60 nm) and studied the temporal response (2 h to 14 days) of human mesenchymal stem cells (hMSCs) using a panel of real-time localization and activity biosensors. Our findings revealed that within the first 4 to 24 h postadhesion and spreading, hMSCs on smaller nanodomain spacings recruit more activated FAK and Src proteins to produce larger, longer-lived, and increased numbers of focal adhesions (FAs). The adhesions formed on smaller nanospacings rapidly recruit higher amounts of nonmuscle myosin IIA and vinculin and experience tension forces (by >5 pN/FA) significantly higher than those observed on larger nanodomain spacings. The transmission of higher levels of tension into the cytoskeleton at short times was accompanied by higher Rac1, cytosolic ß-catenin, and nuclear localization of YAP/TAZ and RUNX2, which together biased the commitment of hMSCs to an osteogenic fate. This investigation provides mechanistic insights to confirm that smaller lateral spacings of adhesive nanodomains alter hMSC mechanosensing and biases mechanotransduction at short times via differential coupling of FAK/Src/Rac1/myosin IIA/YAP/TAZ signaling pathways to support longer-term changes in stem cell differentiation and state.


Asunto(s)
Adipogénesis/genética , Linaje de la Célula/genética , Células Madre Mesenquimatosas/efectos de los fármacos , Osteogénesis/genética , Proteínas Adaptadoras Transductoras de Señales/genética , Adipogénesis/efectos de los fármacos , Diferenciación Celular/efectos de los fármacos , Linaje de la Célula/efectos de los fármacos , Microambiente Celular/efectos de los fármacos , Subunidad alfa 1 del Factor de Unión al Sitio Principal/genética , Citoesqueleto/efectos de los fármacos , Citoesqueleto/genética , Matriz Extracelular/efectos de los fármacos , Matriz Extracelular/genética , Adhesiones Focales/efectos de los fármacos , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Humanos , Células Madre Mesenquimatosas/citología , Osteogénesis/efectos de los fármacos , Polímeros/química , Polímeros/farmacología , Transducción de Señal/efectos de los fármacos , Factores de Transcripción/genética , Proteínas Señalizadoras YAP , beta Catenina/genética , Proteína de Unión al GTP rac1/genética
19.
Front Immunol ; 10: 1112, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31164890

RESUMEN

Over the last decade, the acceleration in the clinical use of mesenchymal stromal cells (MSCs) has been nothing short of spectacular. Perhaps most surprising is how little we know about the "MSC product." Although MSCs are being delivered to patients at an alarming rate, the regulatory requirements for MSC therapies (for example in terms of quality assurance and quality control) are nowhere near the expectations of traditional pharmaceuticals. That said, the standards that define a chemical compound or purified recombinant protein cannot be applied with the same stringency to a cell-based therapy. Biological processes are dynamic, adaptive and variable. Heterogeneity will always exist or emerge within even the most rigorously sorted clonal cell populations. With MSCs, perhaps more so than any other therapeutic cell, heterogeneity pervades at multiple levels, from the sample source to the single cell. The research and clinical communities collectively need to recognize and take steps to address this troublesome truth, to ensure that the promise of MSC-based therapies is fulfilled.


Asunto(s)
Diferenciación Celular , Plasticidad de la Célula , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/metabolismo , Animales , Tratamiento Basado en Trasplante de Células y Tejidos/métodos , Ensayos Clínicos como Asunto , Células Clonales/citología , Células Clonales/metabolismo , Humanos , Trasplante de Células Madre Mesenquimatosas/métodos , Cultivo Primario de Células
20.
ACS Biomater Sci Eng ; 5(11): 5844-5856, 2019 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-33405675

RESUMEN

The microstructure and biodegradability of a near ß Ti-25Nb-3Zr-3Mo-2Sn alloy produced by laser engineered net shaping have been compared to those of alloys produced via casting and cold rolling in order to identify the key effects of processing pathways on the development of microstructure and biocorrosion properties. Results confirm the significant influence of processing technique on microstructure and concomitant biocompatibility of the alloy. Tests using mesenchymal stem cells confirm the ability of the additively manufactured alloy to support cell adhesion and spreading.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...