Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
Cells ; 13(5)2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38474378

RESUMEN

BACKGROUND: Diabetic foot ulcers (DFU) pose a significant health risk in diabetic patients, with insufficient revascularization during wound healing being the primary cause. This study aimed to assess microvessel sprouting and wound healing capabilities using vascular endothelial growth factor (VEGF-A) and a modified fibroblast growth factor (FGF1). METHODS: An ex vivo aortic ring rodent model and an in vivo wound healing model in diabetic mice were employed to evaluate the microvessel sprouting and wound healing capabilities of VEGF-A and a modified FGF1 both as monotherapies and in combination. RESULTS: The combination of VEGF-A and FGF1 demonstrated increased vascular sprouting in the ex vivo mouse aortic ring model, and topical administration of a combination of VEGF-A and FGF1 mRNAs formulated in lipid nanoparticles (LNPs) in mouse skin wounds promoted faster wound closure and increased neovascularization seven days post-surgical wound creation. RNA-sequencing analysis of skin samples at day three post-wound creation revealed a strong transcriptional response of the wound healing process, with the combined treatment showing significant enrichment of genes linked to skin growth. CONCLUSION: f-LNPs encapsulating VEGF-A and FGF1 mRNAs present a promising approach to improving the scarring process in DFU.


Asunto(s)
Diabetes Mellitus Experimental , Pie Diabético , Humanos , Ratones , Animales , Factor A de Crecimiento Endotelial Vascular/metabolismo , Factor 1 de Crecimiento de Fibroblastos , Neovascularización Fisiológica/fisiología , Cicatrización de Heridas/fisiología , Modelos Animales de Enfermedad
2.
Mol Ther ; 31(3): 866-874, 2023 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-36528793

RESUMEN

Vascular endothelial growth factor A (VEGF-A) has therapeutic cardiovascular effects, but delivery challenges have impeded clinical development. We report the first clinical study of naked mRNA encoding VEGF-A (AZD8601) injected into the human heart. EPICCURE (ClinicalTrials.gov: NCT03370887) was a randomized, double-blind study of AZD8601 in patients with left ventricular ejection fraction (LVEF) 30%-50% who were undergoing elective coronary artery bypass surgery. Thirty epicardial injections of AZD8601 (total 3 mg) or placebo in citrate-buffered saline were targeted to ischemic but viable myocardial regions mapped using quantitative [15O]-water positron emission tomography. Seven patients received AZD8601 and four received placebo and were followed for 6 months. There were no deaths or treatment-related serious adverse events and no AZD8601-associated infections, immune reactions, or arrhythmias. Exploratory outcomes indicated potential improvement in LVEF, Kansas City Cardiomyopathy Questionnaire scores, and N-terminal pro-B-type natriuretic peptide levels, but the study is limited in size, and significant efficacy conclusions are not possible from the dataset. Naked mRNA without lipid encapsulation may provide a safe delivery platform for introducing genetic material to cardiac muscle, but further studies are needed to confirm efficacy and safety in a larger patient pool.


Asunto(s)
Isquemia Miocárdica , Factor A de Crecimiento Endotelial Vascular , Humanos , Factor A de Crecimiento Endotelial Vascular/genética , Volumen Sistólico , Función Ventricular Izquierda , Puente de Arteria Coronaria/efectos adversos , Puente de Arteria Coronaria/métodos , Corazón , Resultado del Tratamiento , Isquemia Miocárdica/terapia
3.
Sci Adv ; 8(46): eadd5430, 2022 11 18.
Artículo en Inglés | MEDLINE | ID: mdl-36383675

RESUMEN

We performed collapsing analyses on 454,796 UK Biobank (UKB) exomes to detect gene-level associations with diabetes. Recessive carriers of nonsynonymous variants in MAP3K15 were 30% less likely to develop diabetes (P = 5.7 × 10-10) and had lower glycosylated hemoglobin (ß = -0.14 SD units, P = 1.1 × 10-24). These associations were independent of body mass index, suggesting protection against insulin resistance even in the setting of obesity. We replicated these findings in 96,811 Admixed Americans in the Mexico City Prospective Study (P < 0.05)Moreover, the protective effect of MAP3K15 variants was stronger in individuals who did not carry the Latino-enriched SLC16A11 risk haplotype (P = 6.0 × 10-4). Separately, we identified a Finnish-enriched MAP3K15 protein-truncating variant associated with decreased odds of both type 1 and type 2 diabetes (P < 0.05) in FinnGen. No adverse phenotypes were associated with protein-truncating MAP3K15 variants in the UKB, supporting this gene as a therapeutic target for diabetes.


Asunto(s)
Diabetes Mellitus Tipo 2 , Quinasas Quinasa Quinasa PAM , Humanos , Diabetes Mellitus Tipo 2/genética , Predisposición Genética a la Enfermedad , Transportadores de Ácidos Monocarboxílicos/genética , Obesidad/genética , Estudios Prospectivos , Quinasas Quinasa Quinasa PAM/genética
4.
Nat Cell Biol ; 24(5): 659-671, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35550611

RESUMEN

Heart regeneration is an unmet clinical need, hampered by limited renewal of adult cardiomyocytes and fibrotic scarring. Pluripotent stem cell-based strategies are emerging, but unravelling cellular dynamics of host-graft crosstalk remains elusive. Here, by combining lineage tracing and single-cell transcriptomics in injured non-human primate heart biomimics, we uncover the coordinated action modes of human progenitor-mediated muscle repair. Chemoattraction via CXCL12/CXCR4 directs cellular migration to injury sites. Activated fibroblast repulsion targets fibrosis by SLIT2/ROBO1 guidance in organizing cytoskeletal dynamics. Ultimately, differentiation and electromechanical integration lead to functional restoration of damaged heart muscle. In vivo transplantation into acutely and chronically injured porcine hearts illustrated CXCR4-dependent homing, de novo formation of heart muscle, scar-volume reduction and prevention of heart failure progression. Concurrent endothelial differentiation contributed to graft neovascularization. Our study demonstrates that inherent developmental programmes within cardiac progenitors are sequentially activated in disease, enabling the cells to sense and counteract acute and chronic injury.


Asunto(s)
Proteínas del Tejido Nervioso , Células Madre Pluripotentes , Animales , Diferenciación Celular , Cicatriz/patología , Cicatriz/prevención & control , Fibrosis , Humanos , Miocardio/patología , Miocitos Cardíacos/patología , Células Madre Pluripotentes/patología , Receptores Inmunológicos , Porcinos
5.
Nat Commun ; 13(1): 3018, 2022 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-35641497

RESUMEN

The dysregulated physical interaction between two intracellular membrane proteins, the sarco/endoplasmic reticulum Ca2+ ATPase and its reversible inhibitor phospholamban, induces heart failure by inhibiting calcium cycling. While phospholamban is a bona-fide therapeutic target, approaches to selectively inhibit this protein remain elusive. Here, we report the in vivo application of intracellular acting antibodies (intrabodies), derived from the variable domain of camelid heavy-chain antibodies, to modulate the function of phospholamban. Using a synthetic VHH phage-display library, we identify intrabodies with high affinity and specificity for different conformational states of phospholamban. Rapid phenotypic screening, via modified mRNA transfection of primary cells and tissue, efficiently identifies the intrabody with most desirable features. Adeno-associated virus mediated delivery of this intrabody results in improvement of cardiac performance in a murine heart failure model. Our strategy for generating intrabodies to investigate cardiac disease combined with modified mRNA and adeno-associated virus screening could reveal unique future therapeutic opportunities.


Asunto(s)
Proteínas de Unión al Calcio , Insuficiencia Cardíaca , Animales , Proteínas de Unión al Calcio/genética , Proteínas de Unión al Calcio/metabolismo , Dependovirus/genética , Dependovirus/metabolismo , Corazón , Ratones , ARN Mensajero
6.
Cardiovasc Res ; 118(2): 517-530, 2022 01 29.
Artículo en Inglés | MEDLINE | ID: mdl-33705529

RESUMEN

AIMS: Hypertrophic cardiomyopathy (HCM) is characterized by cardiomyocyte hypertrophy and disarray, and myocardial stiffness due to interstitial fibrosis, which result in impaired left ventricular filling and diastolic dysfunction. The latter manifests as exercise intolerance, angina, and dyspnoea. There is currently no specific treatment for improving diastolic function in HCM. Here, we investigated whether myeloperoxidase (MPO) is expressed in cardiomyocytes and provides a novel therapeutic target for alleviating diastolic dysfunction in HCM. METHODS AND RESULTS: Human cardiomyocytes derived from control-induced pluripotent stem cells (iPSC-CMs) were shown to express MPO, with MPO levels being increased in iPSC-CMs generated from two HCM patients harbouring sarcomeric mutations in the MYBPC3 and MYH7 genes. The presence of cardiomyocyte MPO was associated with higher chlorination and peroxidation activity, increased levels of 3-chlorotyrosine-modified cardiac myosin binding protein-C (MYBPC3), attenuated phosphorylation of MYBPC3 at Ser-282, perturbed calcium signalling, and impaired cardiomyocyte relaxation. Interestingly, treatment with the MPO inhibitor, AZD5904, reduced 3-chlorotyrosine-modified MYBPC3 levels, restored MYBPC3 phosphorylation, and alleviated the calcium signalling and relaxation defects. Finally, we found that MPO protein was expressed in healthy adult murine and human cardiomyocytes, and MPO levels were increased in diseased hearts with left ventricular hypertrophy. CONCLUSION: This study demonstrates that MPO inhibition alleviates the relaxation defect in hypertrophic iPSC-CMs through MYBPC3 phosphorylation. These findings highlight cardiomyocyte MPO as a novel therapeutic target for improving myocardial relaxation associated with HCM, a treatment strategy which can be readily investigated in the clinical setting, given that MPO inhibitors are already available for clinical testing.


Asunto(s)
Cardiomiopatía Hipertrófica/tratamiento farmacológico , Inhibidores Enzimáticos/farmacología , Hipertrofia Ventricular Izquierda/tratamiento farmacológico , Células Madre Pluripotentes Inducidas/efectos de los fármacos , Contracción Miocárdica/efectos de los fármacos , Miocitos Cardíacos/efectos de los fármacos , Peroxidasa/antagonistas & inhibidores , Función Ventricular Izquierda/efectos de los fármacos , Animales , Miosinas Cardíacas/genética , Miosinas Cardíacas/metabolismo , Cardiomiopatía Hipertrófica/enzimología , Cardiomiopatía Hipertrófica/genética , Cardiomiopatía Hipertrófica/fisiopatología , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Línea Celular , Modelos Animales de Enfermedad , Humanos , Hipertrofia Ventricular Izquierda/enzimología , Hipertrofia Ventricular Izquierda/genética , Hipertrofia Ventricular Izquierda/fisiopatología , Células Madre Pluripotentes Inducidas/enzimología , Células Madre Pluripotentes Inducidas/patología , Masculino , Ratones Endogámicos C57BL , Mutación Missense , Miocitos Cardíacos/enzimología , Miocitos Cardíacos/patología , Cadenas Pesadas de Miosina/genética , Cadenas Pesadas de Miosina/metabolismo , Peroxidasa/metabolismo , Fosforilación , Especies Reactivas de Oxígeno/metabolismo , Tirosina/análogos & derivados , Tirosina/metabolismo
8.
Hum Gene Ther ; 32(19-20): 1295-1307, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34494459

RESUMEN

Based on recent success in using modified RNA in clinical applications, we tested the safety, feasibility, and efficacy of direct delivery of citrate-saline-formulated mRNA into an hibernating ischemic heart muscle using an electromechanical mapping and injection catheter system (NOGA/Myostar) in a porcine chronic myocardial ischemia model. Chronic ischemia was induced in domestic pigs (n = 24) using a bottleneck stent placed in the left anterior descending coronary artery. Low (1 mg) and high (7.5 mg) doses of citrate-saline-formulated vascular endothelial growth factor (VEGF)-A165 mRNA were administered in the study. LacZ mRNA and citrate-saline buffer were used as controls. Ten intramyocardial injections (200 µL each) of the mRNAs or citrate-saline buffer were given endovascularly into the hibernating ischemic myocardium using the NOGA catheter. Positron emission tomography 15O-radiowater imaging was performed 7 days after the induction of ischemia and 28 days after the mRNA delivery to measure quantitative myocardial blood perfusion. Coronary angiography, left ventricular function measurements, and clinical chemistry were obtained at each time point. Thirty-five days after the mRNA transfers, pigs were sacrificed, and infarct size and general histology were analyzed. LacZ mRNA pigs were sacrificed 24 h after the transduction. Citrate-saline-formulated mRNA delivery into the ischemic myocardium with endovascular injection catheter did not lead to meaningful transduction with the translation of VEGF-A165, nor therapeutic effects in the heart. VEGF-A165 mRNA showed no statistically significant improvements in left ventricular ejection fraction (LVEF), cardiac output, myocardial perfusion, infarct size, collateral growth, or capillary area in the study groups. However, there was a trend in the high-dose group toward an improved LVEF and cardiac output at rest. No significant adverse effects were observed. In conclusion, the NOGA/Myostar injection catheter system is ineffective in delivering citrate-saline-formulated mRNAs into the heart muscle with the doses and methods used in a porcine chronic myocardial ischemia model.


Asunto(s)
Isquemia Miocárdica , Factor A de Crecimiento Endotelial Vascular , Animales , Catéteres , Ácido Cítrico , Isquemia Miocárdica/genética , Isquemia Miocárdica/terapia , Miocardio , ARN Mensajero/genética , Volumen Sistólico , Porcinos , Función Ventricular Izquierda
9.
Nat Commun ; 12(1): 5180, 2021 08 30.
Artículo en Inglés | MEDLINE | ID: mdl-34462437

RESUMEN

Heart failure (HF) is a major cause of morbidity and mortality worldwide, highlighting an urgent need for novel treatment options, despite recent improvements. Aberrant Ca2+ handling is a key feature of HF pathophysiology. Restoring the Ca2+ regulating machinery is an attractive therapeutic strategy supported by genetic and pharmacological proof of concept studies. Here, we study antisense oligonucleotides (ASOs) as a therapeutic modality, interfering with the PLN/SERCA2a interaction by targeting Pln mRNA for downregulation in the heart of murine HF models. Mice harboring the PLN R14del pathogenic variant recapitulate the human dilated cardiomyopathy (DCM) phenotype; subcutaneous administration of PLN-ASO prevents PLN protein aggregation, cardiac dysfunction, and leads to a 3-fold increase in survival rate. In another genetic DCM mouse model, unrelated to PLN (Cspr3/Mlp-/-), PLN-ASO also reverses the HF phenotype. Finally, in rats with myocardial infarction, PLN-ASO treatment prevents progression of left ventricular dilatation and improves left ventricular contractility. Thus, our data establish that antisense inhibition of PLN is an effective strategy in preclinical models of genetic cardiomyopathy as well as ischemia driven HF.


Asunto(s)
Proteínas de Unión al Calcio/genética , Cardiomiopatías/genética , Cardiomiopatías/terapia , Terapia Genética , Insuficiencia Cardíaca/genética , Insuficiencia Cardíaca/terapia , Oligonucleótidos Antisentido/genética , Animales , Calcio/metabolismo , Proteínas de Unión al Calcio/metabolismo , Cardiomiopatías/metabolismo , Femenino , Insuficiencia Cardíaca/metabolismo , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Miocitos Cardíacos/metabolismo , Oligonucleótidos Antisentido/metabolismo , Ratas , Ratas Endogámicas Lew
10.
Cell Mol Bioeng ; 14(4): 321-338, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34290839

RESUMEN

INTRODUCTION: Pharmacologic approaches for promoting angiogenesis have been utilized to accelerate healing of chronic wounds in diabetic patients with varying degrees of success. We hypothesize that the distribution of proangiogenic drugs in the wound area critically impacts the rate of closure of diabetic wounds. To evaluate this hypothesis, we developed a mathematical model that predicts how spatial distribution of VEGF-A produced by delivery of a modified mRNA (AZD8601) accelerates diabetic wound healing. METHODS: We modified a previously published model of cutaneous wound healing based on coupled partial differential equations that describe the density of sprouting capillary tips, chemoattractant concentration, and density of blood vessels in a circular wound. Key model parameters identified by a sensitivity analysis were fit to data obtained from an in vivo wound healing study performed in the dorsum of diabetic mice, and a pharmacokinetic model was used to simulate mRNA and VEGF-A distribution following injections with AZD8601. Due to the limited availability of data regarding the spatial distribution of AZD8601 in the wound bed, we performed simulations with perturbations to the location of injections and diffusion coefficient of mRNA to understand the impact of these spatial parameters on wound healing. RESULTS: When simulating injections delivered at the wound border, the model predicted that injections delivered on day 0 were more effective in accelerating wound healing than injections delivered at later time points. When the location of the injection was varied throughout the wound space, the model predicted that healing could be accelerated by delivering injections a distance of 1-2 mm inside the wound bed when compared to injections delivered on the same day at the wound border. Perturbations to the diffusivity of mRNA predicted that restricting diffusion of mRNA delayed wound healing by creating an accumulation of VEGF-A at the wound border. Alternatively, a high mRNA diffusivity had no effect on wound healing compared to a simulation with vehicle injection due to the rapid loss of mRNA at the wound border to surrounding tissue. CONCLUSIONS: These findings highlight the critical need to consider the location of drug delivery and diffusivity of the drug, parameters not typically explored in pre-clinical experiments, when designing and testing drugs for treating diabetic wounds. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s12195-021-00678-9.

11.
Commun Biol ; 4(1): 82, 2021 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-33469143

RESUMEN

Bone has a remarkable potential for self-healing and repair, yet several injury types are non-healing even after surgical or non-surgical treatment. Regenerative therapies that induce bone repair or improve the rate of recovery are being intensely investigated. Here, we probed the potential of bone marrow stem cells (BMSCs) engineered with chemically modified mRNAs (modRNA) encoding the hBMP-2 and VEGF-A gene to therapeutically heal bone. Induction of osteogenesis from modRNA-treated BMSCs was confirmed by expression profiles of osteogenic related markers and the presence of mineralization deposits. To test for therapeutic efficacy, a collagen scaffold inoculated with modRNA-treated BMSCs was explored in an in vivo skull defect model. We show that hBMP-2 and VEGF-A modRNAs synergistically drive osteogenic and angiogenic programs resulting in superior healing properties. This study exploits chemically modified mRNAs, together with biomaterials, as a potential approach for the clinical treatment of bone injury and defects.


Asunto(s)
Proteína Morfogenética Ósea 2/metabolismo , Huesos/metabolismo , Factor A de Crecimiento Endotelial Vascular/metabolismo , Animales , Materiales Biocompatibles , Células de la Médula Ósea/metabolismo , Regeneración Ósea/fisiología , Diferenciación Celular , Células Cultivadas , China , Colágeno/metabolismo , Masculino , Células Madre Mesenquimatosas/metabolismo , Neovascularización Fisiológica/fisiología , Osteogénesis/fisiología , ARN Mensajero/genética , ARN Mensajero/metabolismo , Ratas , Ratas Sprague-Dawley , Ingeniería de Tejidos
12.
CPT Pharmacometrics Syst Pharmacol ; 9(7): 384-394, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32438492

RESUMEN

Intradermal delivery of AZD8601, an mRNA designed to produce vascular endothelial growth factor A (VEGF-A), has previously been shown to accelerate cutaneous wound healing in a murine diabetic model. Here, we develop population pharmacokinetic and pharmacodynamic models aiming to quantify the effect of AZD8601 injections on the dynamics of wound healing. A dataset of 584 open wound area measurements from 131 mice was integrated from 3 independent studies encompassing different doses, dosing timepoints, and number of doses. Evaluation of several candidate models showed that wound healing acceleration is not likely driven directly by time-dependent VEGF-A concentration. Instead, we found that administration of AZD8601 induced a sustained acceleration of wound healing depending on the accumulated dose, with a dose producing 50% of the maximal effect of 92 µg. Simulations with this model showed that a single dose of 200 µg AZD8601 can reduce the time to reach 50% wound healing by up to 5 days.


Asunto(s)
Diabetes Mellitus Experimental/terapia , ARN Mensajero/administración & dosificación , Factor A de Crecimiento Endotelial Vascular/genética , Cicatrización de Heridas/genética , Animales , Diabetes Mellitus Experimental/complicaciones , Ratones , Modelos Biológicos , ARN Mensajero/genética , Factores de Tiempo
13.
Sci Rep ; 10(1): 2494, 2020 02 12.
Artículo en Inglés | MEDLINE | ID: mdl-32051439

RESUMEN

Despite the widespread clinical use of cardioprotection by long-term direct antagonism of P2Y12 receptor, underlying mechanisms are unclear. Here, we identify how release of pro-survival exosomes from human cardiac-derived mesenchymal progenitor cells (hCPCs) is regulated by clinically relevant dose of ticagrelor (1 µM), an oral selective and reversible non-thienopyridine P2Y12 inhibitor. Ticagrelor-induced enhancement of exosome levels is related to increased mitotic activity of hCPCs. We show a drug-response threshold above which the effects on hCPCs are lost due to higher dose of ticagrelor and larger adenosine levels. While it is known that pan-Aurora kinase inhibitor halts cell proliferation through dephosphorylation of histone H3 residue Ser10, we demonstrate that it also prevents ticagrelor-induced effects on release of cardiac progenitor cell-derived exosomes delivering anti-apoptotic HSP70. Indeed, sustained pre-treatment of cardiomyocytes with exosomes released from explant-derived hCPCs exposed to low-dose ticagrelor attenuated hypoxia-induced apoptosis through acute phosphorylation of ERK42/44. Our data indicate that ticagrelor can be leveraged to modulate release of anti-hypoxic exosomes from resident hCPCs.


Asunto(s)
Exosomas/efectos de los fármacos , Miocitos Cardíacos/efectos de los fármacos , Antagonistas del Receptor Purinérgico P2Y/farmacología , Ticagrelor/farmacología , Anciano , Animales , Apoptosis , Aurora Quinasas/metabolismo , Hipoxia de la Célula , Proliferación Celular , Células Cultivadas , Exosomas/metabolismo , Proteínas HSP70 de Choque Térmico/metabolismo , Humanos , Sistema de Señalización de MAP Quinasas , Ratones , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/fisiología
14.
Microcirculation ; 27(3): e12598, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31660674

RESUMEN

OBJECTIVE: Arteriogenesis is an important mechanism that contributes to restoration of oxygen supply in chronically ischemic tissues, but remains incompletely understood due to technical limitations. This study presents a novel approach for comprehensive assessment of the remodeling pattern in a complex microvascular network containing multiple collateral microvessels. METHODS: We have developed a hardware-software integrated platform for quantitative, longitudinal, and label-free imaging of network-wide hemodynamic changes and arteriogenesis at the single-vessel level. By ligating feeding arteries in the mouse ear, we induced network-wide hemodynamic redistribution and localized arteriogenesis. The utility of this technology was demonstrated by studying the influence of obesity on microvascular arteriogenesis. RESULTS: Simultaneously monitoring the remodeling of competing collateral arterioles revealed a new, inverse relationship between initial vascular resistance and extent of arteriogenesis. Obese mice exhibited similar remodeling responses to lean mice through the first week, including diameter increase and flow upregulation in collateral arterioles. However, these gains were subsequently lost in obese mice. CONCLUSIONS: Capable of label-free, comprehensive, and dynamic quantification of structural and functional changes in the microvascular network in vivo, this platform opens up new opportunities to study the mechanisms of microvascular arteriogenesis, its implications in diseases, and approaches to pharmacologically rectify microvascular dysfunction.


Asunto(s)
Angiografía , Circulación Colateral , Hemodinámica , Isquemia , Neovascularización Fisiológica , Animales , Arteriolas/diagnóstico por imagen , Arteriolas/fisiopatología , Femenino , Isquemia/diagnóstico por imagen , Isquemia/fisiopatología , Ratones , Ratones Transgénicos
15.
J Control Release ; 310: 103-114, 2019 09 28.
Artículo en Inglés | MEDLINE | ID: mdl-31425721

RESUMEN

Synthetic chemically modified mRNAs (modRNA) encoding vascular endothelial growth factor (VEGF) represents an alternative to gene therapy for the treatment of ischemic cardiovascular injuries. However, novel delivery approaches of modRNA are needed to improve therapeutic efficacy in the diseased setting. We hypothesized that cell-mediated modRNA delivery may enhance the in vivo expression kinetics of VEGF protein thus promoting more potent angiogenic effects. Here, we employed skin fibroblasts as a "proof of concept" to probe the therapeutic potential of a cell-mediated mRNA delivery system in a murine model of critical limb ischemia (CLI). We show that fibroblasts pre-treated with VEGF modRNA have the potential to fully salvage ischemic limbs. Using detailed molecular analysis we reveal that a fibroblast-VEGF modRNA combinatorial treatment significantly reduced tissue necrosis and dramatically improved vascular densities in CLI-injured limbs when compared to control and vehicle groups. Furthermore, fibroblast-delivered VEGF modRNA treatment increased the presence of Pax7+ satellite cells, indicating a possible correlation between VEGF and satellite cell activity. Our study is the first to demonstrate that a cell-mediated modRNA therapy could be an alternative advanced strategy for cardiovascular diseases.


Asunto(s)
Fibroblastos/metabolismo , Técnicas de Transferencia de Gen , Isquemia/terapia , Neovascularización Fisiológica/fisiología , ARN Mensajero/genética , Factor A de Crecimiento Endotelial Vascular/genética , Animales , Capilares/metabolismo , Capilares/fisiopatología , Modelos Animales de Enfermedad , Arteria Femoral/metabolismo , Arteria Femoral/patología , Arteria Femoral/fisiopatología , Miembro Posterior/irrigación sanguínea , Miembro Posterior/patología , Miembro Posterior/fisiopatología , Humanos , Isquemia/patología , Isquemia/fisiopatología , Microcirculación/fisiología , ARN Mensajero/administración & dosificación , Regeneración , Transfección , Factor A de Crecimiento Endotelial Vascular/administración & dosificación
16.
Nat Commun ; 10(1): 871, 2019 02 20.
Artículo en Inglés | MEDLINE | ID: mdl-30787295

RESUMEN

Chemically modified mRNA is an efficient, biocompatible modality for therapeutic protein expression. We report a first-time-in-human study of this modality, aiming to evaluate safety and potential therapeutic effects. Men with type 2 diabetes mellitus (T2DM) received intradermal injections of modified mRNA encoding vascular endothelial growth factor A (VEGF-A) or buffered saline placebo (ethical obligations precluded use of a non-translatable mRNA control) at randomized sites on the forearm. The only causally treatment-related adverse events were mild injection-site reactions. Skin microdialysis revealed elevated VEGF-A protein levels at mRNA-treated sites versus placebo-treated sites from about 4-24 hours post-administration. Enhancements in basal skin blood flow at 4 hours and 7 days post-administration were detected using laser Doppler fluximetry and imaging. Intradermal VEGF-A mRNA was well tolerated and led to local functional VEGF-A protein expression and transient skin blood flow enhancement in men with T2DM. VEGF-A mRNA may have therapeutic potential for regenerative angiogenesis.


Asunto(s)
Diabetes Mellitus Tipo 2/terapia , Neovascularización Fisiológica/fisiología , ARN Mensajero/efectos adversos , ARN Mensajero/uso terapéutico , Piel/irrigación sanguínea , Factor A de Crecimiento Endotelial Vascular/genética , Adulto , Anciano , Terapia Genética , Humanos , Inyecciones Intradérmicas , Masculino , Persona de Mediana Edad , Placebos/administración & dosificación , ARN Mensajero/genética , Flujo Sanguíneo Regional/genética
17.
Nat Biotechnol ; 37(3): 232-237, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30778231

RESUMEN

The retraction of >30 falsified studies by Anversa et al. has had a disheartening impact on the cardiac cell therapeutics field. The premise of heart muscle regeneration by the transdifferentiation of bone marrow cells or putative adult resident cardiac progenitors has been largely disproven. Over the past 18 years, a generation of physicians and scientists has lost years chasing these studies, and patients have been placed at risk with little scientific grounding. Funding agencies invested hundreds of millions of dollars in irreproducible work, and both academic institutions and the scientific community ignored troubling signals over a decade of questionable work. Our collective retrospective analysis identifies preventable problems at the level of the editorial and peer-review process, funding agencies and academic institutions. This Perspective provides a chronology of the forces that led to this scientific debacle, integrating direct knowledge of the process. We suggest a science-driven path forward that includes multiple novel approaches to the problem of heart muscle regeneration.


Asunto(s)
Tratamiento Basado en Trasplante de Células y Tejidos , Corazón/crecimiento & desarrollo , Regeneración/genética , Trasplante de Células Madre/tendencias , Células de la Médula Ósea/citología , Trasplante de Médula Ósea/métodos , Transdiferenciación Celular/genética , Corazón/fisiopatología , Humanos , Miocardio/citología , Miocardio/metabolismo
18.
Sci Rep ; 8(1): 17509, 2018 11 30.
Artículo en Inglés | MEDLINE | ID: mdl-30504800

RESUMEN

Capable of mediating efficient transfection and protein production without eliciting innate immune responses, chemically modified mRNA holds great potential to produce paracrine factors at a physiologically beneficial level, in a spatiotemporally controlled manner, and with low toxicity. Although highly promising in cardiovascular medicine and wound healing, effects of this emerging therapeutic on the microvasculature and its bioactivity in disease settings remain poorly understood. Here, we longitudinally and comprehensively characterize microvascular responses to AZD8601, a modified mRNA encoding vascular endothelial growth factor A (VEGF-A), in vivo. Using multi-parametric photoacoustic microscopy, we show that intradermal injection of AZD8601 formulated in a biocompatible vehicle results in pronounced, sustained and dose-dependent vasodilation, blood flow upregulation, and neovessel formation, in striking contrast to those induced by recombinant human VEGF-A protein, a non-translatable variant of AZD8601, and citrate/saline vehicle. Moreover, we evaluate the bioactivity of AZD8601 in a mouse model of diabetic wound healing in vivo. Using a boron nanoparticle-based tissue oxygen sensor, we show that sequential dosing of AZD8601 improves vascularization and tissue oxygenation of the wound bed, leading to accelerated re-epithelialization during the early phase of diabetic wound healing.


Asunto(s)
Angiopatías Diabéticas/etiología , Angiopatías Diabéticas/patología , Microvasos/metabolismo , ARN Mensajero/genética , Factor A de Crecimiento Endotelial Vascular/genética , Cicatrización de Heridas/genética , Animales , Angiopatías Diabéticas/diagnóstico por imagen , Modelos Animales de Enfermedad , Humanos , Ratones , Microvasos/efectos de los fármacos , Miocitos del Músculo Liso/metabolismo , Neovascularización Patológica/diagnóstico por imagen , Neovascularización Patológica/genética , Consumo de Oxígeno , Imagen de Lapso de Tiempo , Cicatrización de Heridas/efectos de los fármacos
19.
Int J Cardiol ; 272: 288-297, 2018 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-30177232

RESUMEN

BACKGROUND: Preferential utilization of fatty acids for ATP production represents an advanced metabolic phenotype in developing cardiomyocytes. We investigated whether this phenotype could be attained in human induced pluripotent stem cell derived cardiomyocytes (hiPSC-CMs) and assessed its influence on mitochondrial morphology, bioenergetics, respiratory capacity and ultra-structural architecture. METHODS AND RESULTS: Whole-cell proteome analysis of day 14 and day 30-CMs maintained in glucose media revealed a positive influence of extended culture on mitochondria-related processes that primed the day 30-CMs for fatty acid metabolism. Supplementing the day 30-CMs with palmitate/oleate (fatty acids) significantly enhanced mitochondrial remodeling, oxygen consumption rates and ATP production. Metabolomic analysis upon fatty acid supplementation revealed a ß-oxidation fueled ATP elevation that coincided with presence of junctional complexes, intercalated discs, t-tubule-like structures and adult isoform of cardiac troponin T. In contrast, glucose-maintained day 30-CMs continued to harbor underdeveloped ultra-structural architecture and more subdued bioenergetics, constrained by suboptimal mitochondria development. CONCLUSION: The advanced metabolic phenotype of preferential fatty acid utilization was attained in hiPSC-CMs, whereby fatty acid driven ß-oxidation sustained cardiac bioenergetics and respiratory capacity resulting in ultra-structural and functional characteristics similar to those of developmentally advanced cardiomyocytes. Better understanding of mitochondrial bioenergetics and ultra-structural adaptation associated with fatty acid metabolism has important implications in the study of cardiac physiology that are associated with late-onset mitochondrial and metabolic adaptations.


Asunto(s)
Metabolismo Energético/fisiología , Ácidos Grasos/metabolismo , Células Madre Pluripotentes Inducidas/metabolismo , Metabolismo de los Lípidos/fisiología , Mitocondrias/metabolismo , Miocitos Cardíacos/metabolismo , Células Cultivadas , Humanos , Células Madre Pluripotentes Inducidas/ultraestructura , Mitocondrias/ultraestructura , Miocitos Cardíacos/ultraestructura , Fenotipo
20.
Mol Ther Methods Clin Dev ; 9: 330-346, 2018 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-30038937

RESUMEN

mRNA can direct dose-dependent protein expression in cardiac muscle without genome integration, but to date has not been shown to improve cardiac function in a safe, clinically applicable way. Herein, we report that a purified and optimized mRNA in a biocompatible citrate-saline formulation is tissue specific, long acting, and does not stimulate an immune response. In small- and large-animal, permanent occlusion myocardial infarction models, VEGF-A 165 mRNA improves systolic ventricular function and limits myocardial damage. Following a single administration a week post-infarction in mini pigs, left ventricular ejection fraction, inotropy, and ventricular compliance improved, border zone arteriolar and capillary density increased, and myocardial fibrosis decreased at 2 months post-treatment. Purified VEGF-A mRNA establishes the feasibility of improving cardiac function in the sub-acute therapeutic window and may represent a new class of therapies for ischemic injury.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...