Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
Ann Pharmacother ; : 10600280241278786, 2024 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-39250190

RESUMEN

OBJECTIVE: The objective is to evaluate the efficacy and safety of testosterone supplementation in testicular cancer survivors with treatment-related hypogonadism. DATA SOURCES: This systematic review was conducted according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) standards and used Embase, PubMed/MEDLINE, Cochrane Central, Web of Science Core Collection, Korean Journal Index, SciELO, and Global Index Medicus to obtain data in June of 2024. STUDY SELECTION AND DATA EXTRACTION: Analyses evaluating testosterone supplementation in testicular cancer survivors with treatment-induced hypogonadism were included. Any analyses not assessing supplementation in this population or deemed unretrievable were excluded. DATA SYNTHESIS: Ten analyses were included for analysis. A total of 332 bilateral or unilateral testicular cancer survivors with treatment-influenced hypogonadism were reviewed, with 238 patients receiving testosterone replacement. Eight of the 10 analyses assessed participants without poor quality-of-life (QOL) metrics, metabolic factors, and bone mineral density (BMD) at baseline and only found a significant benefit in fat distribution metrics with testosterone supplementation. Two analyses evaluated participants with poor QOL metrics or BMD at baseline and showed improvements in QOL or BMD with testosterone supplementation. RELEVANCE TO PATIENT CARE AND CLINICAL PRACTICE: There is robust evidence regarding the efficacy and safety of testosterone replacement in hypogonadal individuals but limited evidence specifically evaluating supplementation in testicular cancer survivors with treatment-influenced hypogonadism. CONCLUSIONS: The results suggest testosterone replacement may be beneficial in patients with impaired QOL metrics, metabolic factors, and BMD at baseline; the results also suggest that routine supplementation for all individuals in this patient population lacks efficacy.

2.
J Perioper Pract ; : 17504589241268616, 2024 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-39169796

RESUMEN

Given medical advancements in global healthcare systems over the past decade, it may be reasonable to assume that the incidence of surgical site infections would have decreased; however, surveillance data indicate that these rates have held constant. Surgical prophylaxis guidelines from the United States and United Kingdom recommend cefazolin, vancomycin and clindamycin in most surgeries for no longer than 24 hours. As a result of medication shortages impacting the global supply chain, surgeons have needed to evaluate alternative perioperative antibiotics, such as doxycycline; however, research into using doxycycline for preventing surgical site infections is limited. The goal of this study is to retrospectively assess doxycycline's efficacy, safety and role in preventing surgical site infections.

4.
Gene ; 872: 147441, 2023 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-37094694

RESUMEN

Human Histone Locus Bodies (HLBs) are nuclear subdomains comprised of clustered histone genes that are coordinately regulated throughout the cell cycle. We addressed temporal-spatial higher-order genome organization for time-dependent chromatin remodeling at HLBs that supports control of cell proliferation. Proximity distances of specific genomic contacts within histone gene clusters exhibit subtle changes during the G1 phase in MCF10 breast cancer progression model cell lines. This approach directly demonstrates that the two principal histone gene regulatory proteins, HINFP (H4 gene regulator) and NPAT, localize at chromatin loop anchor-points, denoted by CTCF binding, supporting the stringent requirement for histone biosynthesis to package newly replicated DNA as chromatin. We identified a novel enhancer region located âˆ¼ 2 MB distal to histone gene sub-clusters on chromosome 6 that consistently makes genomic contacts with HLB chromatin and is bound by NPAT. During G1 progression the first DNA loops form between one of three histone gene sub-clusters bound by HINFP and the distal enhancer region. Our findings are consistent with a model that the HINFP/NPAT complex controls the formation and dynamic remodeling of higher-order genomic organization of histone gene clusters at HLBs in early to late G1 phase to support transcription of histone mRNAs in S phase.


Asunto(s)
Neoplasias de la Mama , Histonas , Humanos , Femenino , Histonas/genética , Histonas/metabolismo , Cromatina/genética , Neoplasias de la Mama/genética , Ciclo Celular/genética , Proteínas de Ciclo Celular/genética , Cuerpos Nucleares , Familia de Multigenes
5.
Crit Rev Eukaryot Gene Expr ; 33(3): 85-97, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37017672

RESUMEN

Higher-order genomic organization supports the activation of histone genes in response to cell cycle regulatory cues that epigenetically mediates stringent control of transcription at the G1/S-phase transition. Histone locus bodies (HLBs) are dynamic, non-membranous, phase-separated nuclear domains where the regulatory machinery for histone gene expression is organized and assembled to support spatiotemporal epigenetic control of histone genes. HLBs provide molecular hubs that support synthesis and processing of DNA replication-dependent histone mRNAs. These regulatory microenvironments support long-range genomic interactions among non-contiguous histone genes within a single topologically associating domain (TAD). HLBs respond to activation of the cyclin E/CDK2/NPAT/HINFP pathway at the G1/S transition. HINFP and its coactivator NPAT form a complex within HLBs that controls histone mRNA transcription to support histone protein synthesis and packaging of newly replicated DNA. Loss of HINFP compromises H4 gene expression and chromatin formation, which may result in DNA damage and impede cell cycle progression. HLBs provide a paradigm for higher-order genomic organization of a subnuclear domain that executes an obligatory cell cycle-controlled function in response to cyclin E/CDK2 signaling. Understanding the coordinately and spatiotemporally organized regulatory programs in focally defined nuclear domains provides insight into molecular infrastructure for responsiveness to cell signaling pathways that mediate biological control of growth, differentiation phenotype, and are compromised in cancer.


Asunto(s)
Cromatina , Histonas , Histonas/metabolismo , Ciclina E/genética , Ciclina E/metabolismo , Proteínas Nucleares/genética , Proteínas de Ciclo Celular/genética , Ciclo Celular/genética , Epigénesis Genética
6.
BMC Genomics ; 24(1): 43, 2023 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-36698077

RESUMEN

BACKGROUND: Epigenomic profiling assays such as ChIP-seq have been widely used to map the genome-wide enrichment profiles of chromatin-associated proteins and posttranslational histone modifications. Sequencing depth is a key parameter in experimental design and quality control. However, due to variable sequencing depth requirements across experimental conditions, it can be challenging to determine optimal sequencing depth, particularly for projects involving multiple targets or cell types. RESULTS: We developed the peaksat R package to provide target read depth estimates for epigenomic experiments based on the analysis of peak saturation curves. We applied peaksat to establish the distinctive read depth requirements for ChIP-seq studies of histone modifications in different cell lines. Using peaksat, we were able to estimate the target read depth required per library to obtain high-quality peak calls for downstream analysis. In addition, peaksat was applied to other sequence-enrichment methods including CUT&RUN and ATAC-seq. CONCLUSION: peaksat addresses a need for researchers to make informed decisions about whether their sequencing data has been generated to an adequate depth and subsequently sufficient meaningful peaks, and failing that, how many more reads would be required per library. peaksat is applicable to other sequence-based methods that include calling peaks in their analysis.


Asunto(s)
Secuenciación de Inmunoprecipitación de Cromatina , Secuenciación de Nucleótidos de Alto Rendimiento , Secuenciación de Inmunoprecipitación de Cromatina/métodos , Análisis de Secuencia de ADN/métodos , Biblioteca de Genes
7.
Results Probl Cell Differ ; 70: 375-396, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36348115

RESUMEN

The cell cycle is governed by stringent epigenetic mechanisms that, in response to intrinsic and extrinsic regulatory cues, support fidelity of DNA replication and cell division. We will focus on (1) the complex and interdependent processes that are obligatory for control of proliferation and compromised in cancer, (2) epigenetic and topological domains that are associated with distinct phases of the cell cycle that may be altered in cancer initiation and progression, and (3) the requirement for mitotic bookmarking to maintain intranuclear localization of transcriptional regulatory machinery to reinforce cell identity throughout the cell cycle to prevent malignant transformation.


Asunto(s)
Epigénesis Genética , Neoplasias , Humanos , Ciclo Celular/genética , División Celular , Neoplasias/genética , Neoplasias/patología , Cromatina , Regulación de la Expresión Génica
8.
Results Probl Cell Differ ; 70: 339-373, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36348114

RESUMEN

Epigenetic gene regulatory mechanisms play a central role in the biological control of cell and tissue structure, function, and phenotype. Identification of epigenetic dysregulation in cancer provides mechanistic into tumor initiation and progression and may prove valuable for a variety of clinical applications. We present an overview of epigenetically driven mechanisms that are obligatory for physiological regulation and parameters of epigenetic control that are modified in tumor cells. The interrelationship between nuclear structure and function is not mutually exclusive but synergistic. We explore concepts influencing the maintenance of chromatin structures, including phase separation, recognition signals, factors that mediate enhancer-promoter looping, and insulation and how these are altered during the cell cycle and in cancer. Understanding how these processes are altered in cancer provides a potential for advancing capabilities for the diagnosis and identification of novel therapeutic targets.


Asunto(s)
Epigénesis Genética , Neoplasias , Humanos , Fenotipo , Neoplasias/genética , Neoplasias/patología , Regulación de la Expresión Génica , Cromatina
9.
Oncotarget ; 11(26): 2512-2530, 2020 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-32655837

RESUMEN

RUNX1 has recently been shown to play an important role in determination of mammary epithelial cell identity. However, mechanisms by which loss of the RUNX1 transcription factor in mammary epithelial cells leads to epithelial-to-mesenchymal transition (EMT) are not known. Here, we report that interaction between RUNX1 and its heterodimeric partner CBFß is essential for sustaining mammary epithelial cell identity. Disruption of RUNX1-CBFß interaction, DNA binding, and association with mitotic chromosomes alters cell morphology, global protein synthesis, and phenotype-related gene expression. During interphase, RUNX1 is organized as punctate, predominantly nuclear, foci that are dynamically redistributed during mitosis, with a subset localized to mitotic chromosomes. Genome-wide RUNX1 occupancy profiles for asynchronous, mitotically enriched, and early G1 breast epithelial cells reveal RUNX1 associates with RNA Pol II-transcribed protein coding and long non-coding RNA genes and RNA Pol I-transcribed ribosomal genes critical for mammary epithelial proliferation, growth, and phenotype maintenance. A subset of these genes remains occupied by the protein during the mitosis to G1 transition. Together, these findings establish that the RUNX1-CBFß complex is required for maintenance of the normal mammary epithelial phenotype and its disruption leads to EMT. Importantly, our results suggest, for the first time, that RUNX1 mitotic bookmarking of a subset of epithelial-related genes may be an important epigenetic mechanism that contributes to stabilization of the mammary epithelial cell identity.

10.
Nat Commun ; 11(1): 1967, 2020 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-32313124

RESUMEN

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

11.
J Cell Physiol ; 235(10): 7261-7272, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32180230

RESUMEN

Breast cancer stem cells (BCSCs) are competent to initiate tumor formation and growth and refractory to conventional therapies. Consequently BCSCs are implicated in tumor recurrence. Many signaling cascades associated with BCSCs are critical for epithelial-to-mesenchymal transition (EMT). We developed a model system to mechanistically examine BCSCs in basal-like breast cancer using MCF10AT1 FACS sorted for CD24 (negative/low in BCSCs) and CD44 (positive/high in BCSCs). Ingenuity Pathway Analysis comparing RNA-seq on the CD24-/low versus CD24+/high MCF10AT1 indicates that the top activated upstream regulators include TWIST1, TGFß1, OCT4, and other factors known to be increased in BCSCs and during EMT. The top inhibited upstream regulators include ESR1, TP63, and FAS. Consistent with our results, many genes previously demonstrated to be regulated by RUNX factors are altered in BCSCs. The RUNX2 interaction network is the top significant pathway altered between CD24-/low and CD24+/high MCF10AT1. RUNX1 is higher in expression at the RNA level than RUNX2. RUNX3 is not expressed. While, human-specific quantitative polymerase chain reaction primers demonstrate that RUNX1 and CDH1 decrease in human MCF10CA1a cells that have grown tumors within the murine mammary fat pad microenvironment, RUNX2 and VIM increase. Treatment with an inhibitor of RUNX binding to CBFß for 5 days followed by a 7-day recovery period results in EMT suggesting that loss of RUNX1, rather than increase in RUNX2, is a driver of EMT in early stage breast cancer. Increased understanding of RUNX regulation on BCSCs and EMT will provide novel insight into therapeutic strategies to prevent recurrence.


Asunto(s)
Neoplasias de la Mama/metabolismo , Subunidad alfa 1 del Factor de Unión al Sitio Principal/metabolismo , Subunidad alfa 2 del Factor de Unión al Sitio Principal/metabolismo , Células Madre Neoplásicas/metabolismo , Animales , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Línea Celular Tumoral , Subunidad alfa 1 del Factor de Unión al Sitio Principal/antagonistas & inhibidores , Subunidad alfa 1 del Factor de Unión al Sitio Principal/genética , Subunidad alfa 2 del Factor de Unión al Sitio Principal/antagonistas & inhibidores , Subunidad alfa 2 del Factor de Unión al Sitio Principal/genética , Transición Epitelial-Mesenquimal/genética , Femenino , Regulación Neoplásica de la Expresión Génica , Xenoinjertos , Humanos , Ratones , Ratones SCID , Células Madre Neoplásicas/patología , ARN Mensajero/genética , ARN Mensajero/metabolismo , Transducción de Señal , Microambiente Tumoral/genética
12.
J Cell Physiol ; 235(6): 5318-5327, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-31919859

RESUMEN

Despite recent advances in targeted therapies, the molecular mechanisms driving breast cancer initiation, progression, and metastasis are minimally understood. Growing evidence indicate that transfer RNA (tRNA)-derived small RNAs (tsRNA) contribute to biological control and aberrations associated with cancer development and progression. The runt-related transcription factor 1 (RUNX1) transcription factor is a tumor suppressor in the mammary epithelium whereas RUNX1 downregulation is functionally associated with breast cancer initiation and progression. We identified four tsRNA (ts-19, ts-29, ts-46, and ts-112) that are selectively responsive to expression of the RUNX1 tumor suppressor. Our finding that ts-112 and RUNX1 anticorrelate in normal-like mammary epithelial and breast cancer lines is consistent with tumor-related activity of ts-112 and tumor suppressor activity of RUNX1. Inhibition of ts-112 in MCF10CA1a aggressive breast cancer cells significantly reduced proliferation. Ectopic expression of a ts-112 mimic in normal-like mammary epithelial MCF10A cells significantly increased proliferation. These findings support an oncogenic potential for ts-112. Moreover, RUNX1 may repress ts-112 to prevent overactive proliferation in breast epithelial cells to augment its established roles in maintaining the mammary epithelium.


Asunto(s)
Neoplasias de la Mama/genética , Subunidad alfa 2 del Factor de Unión al Sitio Principal/genética , ARN de Transferencia/genética , ARN/genética , Neoplasias de la Mama/patología , Línea Celular Tumoral , Proliferación Celular/genética , Células Epiteliales/metabolismo , Células Epiteliales/patología , Femenino , Regulación Neoplásica de la Expresión Génica/genética , Humanos , Proteínas Supresoras de Tumor/genética
13.
Artículo en Inglés | MEDLINE | ID: mdl-31644839

RESUMEN

OBJECTIVE: Trust, a fundamental part of human interpersonal relationships, is known to be associated with specific brain regions and demographic characteristics. Level of trust in medical professionals can alter population health outcomes and influence the nature of the doctor-patient relationship. This study utilized structural magnetic resonance imaging (MRI) and trust data from the Dallas Heart Study (DHS), a large community-based study, to determine brain regions associated with degree of trust in physicians and the medical profession. The first phase of the DHS was conducted from 2000 to 2002 and the second phase from 2007 to 2009. METHODS: The MRI data were analyzed as part of the DHS using automated FreeSurfer software. Forward stepwise binary logistic regression was performed to investigate the association between measures of trust and bilateral brain region volumes and thickness followed by confirmatory multiple regressions of significant brain regions. A total of 1,596 participants were included in the final analysis. RESULTS: Left caudal anterior cingulate cortex (ACC) thickness was inversely correlated with trust of physicians (P < .01). There were no significant associations between trust in physicians and age, race or ethnicity, or education. CONCLUSIONS: The ACC is an integral part of the salience network, the brain network responsible for communication and social behavior. Trust in physicians did not appear to be influenced by demographic characteristics. The findings suggest there are neuroanatomical correlates of trust in physicians.


Asunto(s)
Giro del Cíngulo/anatomía & histología , Relaciones Médico-Paciente , Médicos , Confianza , Adulto , Comunicación , Femenino , Giro del Cíngulo/diagnóstico por imagen , Encuestas Epidemiológicas , Humanos , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Red Nerviosa/anatomía & histología , Conducta Social
14.
Nat Commun ; 10(1): 1522, 2019 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-30944316

RESUMEN

Recent studies have demonstrated that chromatin architecture is linked to the progression of cancers. However, the roles of 3D structure and its dynamics in hormone-dependent breast cancer and endocrine resistance are largely unknown. Here we report the dynamics of 3D chromatin structure across a time course of estradiol (E2) stimulation in human estrogen receptor α (ERα)-positive breast cancer cells. We identified subsets of temporally highly dynamic compartments predominantly associated with active open chromatin and found that these highly dynamic compartments showed higher alteration in tamoxifen-resistant breast cancer cells. Remarkably, these compartments are characterized by active chromatin states, and enhanced ERα binding but decreased transcription factor CCCTC-binding factor (CTCF) binding. We finally identified a set of ERα-bound promoter-enhancer looping genes enclosed within altered domains that are enriched with cancer invasion, aggressiveness or metabolism signaling pathways. This large-scale analysis expands our understanding of high-order temporal chromatin reorganization underlying hormone-dependent breast cancer.


Asunto(s)
Neoplasias de la Mama/metabolismo , Cromatina/metabolismo , Antineoplásicos Hormonales/farmacología , Neoplasias de la Mama/inducido químicamente , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/genética , Núcleo Celular/metabolismo , Cromatina/química , Resistencia a Antineoplásicos , Epigénesis Genética , Estradiol/farmacología , Receptor alfa de Estrógeno/biosíntesis , Receptor alfa de Estrógeno/genética , Femenino , Humanos , Células MCF-7 , Modelos Moleculares , Regiones Promotoras Genéticas , Unión Proteica , Transducción de Señal , Tamoxifeno/farmacología , Factores de Transcripción
15.
Psychiatry Res Neuroimaging ; 286: 11-17, 2019 04 30.
Artículo en Inglés | MEDLINE | ID: mdl-30852253

RESUMEN

Trust is a fundamental part of human interpersonal relationships, and among other complex factors it is shown to be linked with demographic characteristics and specific regions of the brain. The authors utilized a large, community-based database gathered from the Dallas Heart Study to determine specific brain regions associated with an individual's trust in neighbors. A trust questionnaire was taken and regional brain volumes were determined from structural magnetic resonance imaging. Two analyses using logistic regressions in a training set and validation set were performed to investigate the association between measures of trust and bilateral brain region volumes and thickness. A total of 1527 participants were included in the final analysis. Right caudal anterior cingulate cortex thickness and left caudate volume were inversely correlated with neighbor trust, while left amygdala volume was positively correlated with neighbor trust. Greater age and higher level of education were positively correlated with neighbor trust. African Americans showed less neighbor trust than Caucasians and Hispanics. Anterior cingulate cortex, caudate, and amygdala are all integral parts of the salience network; thus, results of this study suggest that the salience network, the brain network responsible for functions such as communication and social behavior, may play a role in the formation of interpersonal trust.


Asunto(s)
Encéfalo/diagnóstico por imagen , Etnicidad/psicología , Vigilancia de la Población , Características de la Residencia , Confianza/psicología , Adulto , Amígdala del Cerebelo/diagnóstico por imagen , Amígdala del Cerebelo/fisiología , Encéfalo/fisiología , Núcleo Caudado/diagnóstico por imagen , Núcleo Caudado/fisiología , Estudios de Cohortes , Femenino , Giro del Cíngulo/diagnóstico por imagen , Giro del Cíngulo/fisiología , Humanos , Imagen por Resonancia Magnética/métodos , Masculino , Persona de Mediana Edad , Tamaño de los Órganos/fisiología , Texas/epidemiología
16.
Genes Chromosomes Cancer ; 58(7): 407-426, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-30664301

RESUMEN

Spatial positioning is a fundamental principle governing nuclear processes. Chromatin is organized as a hierarchy from nucleosomes to Mbp chromatin domains (CD) or topologically associating domains (TADs) to higher level compartments culminating in chromosome territories (CT). Microscopic and sequencing techniques have substantiated chromatin organization as a critical factor regulating gene expression. For example, enhancers loop back to interact with their target genes almost exclusively within TADs, distally located coregulated genes reposition into common transcription factories upon activation, and Mbp CDs exhibit dynamic motion and configurational changes in vivo. A longstanding question in the nucleus field is whether an interactive nuclear matrix provides a direct link between structure and function. The findings of nonrandom radial positioning of CT within the nucleus suggest the possibility of preferential interaction patterns among populations of CT. Sequential labeling up to 10 CT followed by application of computer imaging and geometric graph mining algorithms revealed cell-type specific interchromosomal networks (ICN) of CT that are altered during the cell cycle, differentiation, and cancer progression. It is proposed that the ICN correlate with the global level of genome regulation. These approaches also demonstrated that the large scale 3-D topology of CT is specific for each CT. The cell-type specific proximity of certain chromosomal regions in normal cells may explain the propensity of distinct translocations in cancer subtypes. Understanding how genes are dysregulated upon disruption of the normal "wiring" of the nucleus by translocations, deletions, and amplifications that are hallmarks of cancer, should enable more targeted therapeutic strategies.


Asunto(s)
Núcleo Celular , Cromatina , Cromosomas , Regulación de la Expresión Génica , Genoma , Animales , Núcleo Celular/genética , Núcleo Celular/ultraestructura , Cromatina/genética , Cromatina/ultraestructura , Cromosomas/genética , Cromosomas/ultraestructura , Regulación de la Expresión Génica/genética , Regulación de la Expresión Génica/fisiología , Humanos
17.
J Cell Physiol ; 234(6): 8597-8609, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30515788

RESUMEN

The RUNX1 transcription factor has recently been shown to be obligatory for normal development. RUNX1 controls the expression of genes essential for proper development in many cell lineages and tissues including blood, bone, cartilage, hair follicles, and mammary glands. Compromised RUNX1 regulation is associated with many cancers. In this review, we highlight evidence for RUNX1 control in both invertebrate and mammalian development and recent novel findings of perturbed RUNX1 control in breast cancer that has implications for other solid tumors. As RUNX1 is essential for definitive hematopoiesis, RUNX1 mutations in hematopoietic lineage cells have been implicated in the etiology of several leukemias. Studies of solid tumors have revealed a context-dependent function for RUNX1 either as an oncogene or a tumor suppressor. These RUNX1 functions have been reported for breast, prostate, lung, and skin cancers that are related to cancer subtypes and different stages of tumor development. Growing evidence suggests that RUNX1 suppresses aggressiveness in most breast cancer subtypes particularly in the early stage of tumorigenesis. Several studies have identified RUNX1 suppression of the breast cancer epithelial-to-mesenchymal transition. Most recently, RUNX1 repression of cancer stem cells and tumorsphere formation was reported for breast cancer. It is anticipated that these new discoveries of the context-dependent diversity of RUNX1 functions will lead to innovative therapeutic strategies for the intervention of cancer and other abnormalities of normal tissues.


Asunto(s)
Subunidad alfa 2 del Factor de Unión al Sitio Principal/metabolismo , Neoplasias/metabolismo , Animales , Subunidad alfa 2 del Factor de Unión al Sitio Principal/genética , Regulación Neoplásica de la Expresión Génica , Humanos , Mutación , Neoplasias/genética , Neoplasias/patología , Pronóstico , Transducción de Señal
18.
Mol Cancer Res ; 16(12): 1952-1964, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30082484

RESUMEN

Breast cancer remains the most common malignant disease in women worldwide. Despite advances in detection and therapies, studies are still needed to understand the mechanisms underlying this cancer. Cancer stem cells (CSC) play an important role in tumor formation, growth, drug resistance, and recurrence. Here, it is demonstrated that the transcription factor RUNX1, well known as essential for hematopoietic differentiation, represses the breast cancer stem cell (BCSC) phenotype and suppresses tumor growth in vivo. The current studies show that BCSCs sorted from premalignant breast cancer cells exhibit decreased RUNX1 levels, whereas ectopic expression of RUNX1 suppresses tumorsphere formation and reduces the BCSC population. RUNX1 ectopic expression in breast cancer cells reduces migration, invasion, and in vivo tumor growth (57%) in mouse mammary fat pad. Mechanistically, RUNX1 functions to suppress breast cancer tumor growth through repression of CSC activity and direct inhibition of ZEB1 expression. Consistent with these cellular and biochemical results, clinical findings using patient specimens reveal that the highest RUNX1 levels occur in normal mammary epithelial cells and that low RUNX1 expression in tumors is associated with poor patient survival. IMPLICATIONS: The key finding that RUNX1 represses stemness in several breast cancer cell lines points to the importance of RUNX1 in other solid tumors where RUNX1 may regulate CSC properties.


Asunto(s)
Neoplasias de la Mama/patología , Subunidad alfa 2 del Factor de Unión al Sitio Principal/genética , Subunidad alfa 2 del Factor de Unión al Sitio Principal/metabolismo , Células Madre Neoplásicas/metabolismo , Homeobox 1 de Unión a la E-Box con Dedos de Zinc/metabolismo , Animales , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Línea Celular Tumoral , Proliferación Celular , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Células MCF-7 , Ratones , Estadificación de Neoplasias , Trasplante de Neoplasias , Análisis de Supervivencia
19.
J Cell Physiol ; 233(12): 9136-9144, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-29968906

RESUMEN

Breast cancer is the most common cancer in women, and accounts for ~30% of new cancer cases and 15% of cancer-related deaths. Tumor relapse and metastasis are primary factors contributing to breast cancer-related deaths. Therefore, the challenge for breast cancer treatment is to sustain remission. A driving force behind tumor relapse is breast cancer heterogeneity (both intertumor, between different patients, and intratumor, within the same tumor). Understanding breast cancer heterogeneity is necessary to develop preventive interventions and targeted therapies. A recently emerging concept is that intratumor heterogeneity is driven by cancer stem cells (CSCs) that are capable of giving rise to a multitude of different cells within a tumor. Studies have highlighted linkage of CSC formation with epithelial-to-mesenchymal transition (EMT). In this review, we summarize the current understanding of breast cancer heterogeneity, links between EMT and CSCs, regulation of EMT by Runx transcription factors, and potential therapeutic strategies targeting these processes.


Asunto(s)
Neoplasias de la Mama/genética , Carcinogénesis/genética , Subunidades alfa del Factor de Unión al Sitio Principal/genética , Transición Epitelial-Mesenquimal/genética , Neoplasias de la Mama/patología , Femenino , Heterogeneidad Genética , Humanos , Células Madre Neoplásicas/metabolismo , Células Madre Neoplásicas/patología
20.
Adv Biol Regul ; 69: 1-10, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29759441

RESUMEN

Nuclear organization is functionally linked to genetic and epigenetic regulation of gene expression for biological control and is modified in cancer. Nuclear organization supports cell growth and phenotypic properties of normal and cancer cells by facilitating physiologically responsive interactions of chromosomes, genes and regulatory complexes at dynamic three-dimensional microenvironments. We will review nuclear structure/function relationships that include: 1. Epigenetic bookmarking of genes by phenotypic transcription factors to control fidelity and plasticity of gene expression as cells enter and exit mitosis; 2. Contributions of chromatin remodeling to breast cancer nuclear morphology, metabolism and effectiveness of chemotherapy; 3. Relationships between fidelity of nuclear organization and metastasis of breast cancer to bone; 4. Dynamic modifications of higher-order inter- and intra-chromosomal interactions in breast cancer cells; 5. Coordinate control of cell growth and phenotype by tissue-specific transcription factors; 6. Oncofetal epigenetic control by bivalent histone modifications that are functionally related to sustaining the stem cell phenotype; and 7. Noncoding RNA-mediated regulation in the onset and progression of breast cancer. The discovery of components to nuclear organization that are functionally related to cancer and compromise gene expression have the potential for translation to innovative cancer diagnosis and targeted therapy.


Asunto(s)
Epigénesis Genética/genética , Animales , Neoplasias de la Mama/genética , Núcleo Celular/metabolismo , Ensamble y Desensamble de Cromatina/genética , Ensamble y Desensamble de Cromatina/fisiología , Humanos , Mitosis/genética , Mitosis/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA