Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Total Environ ; 912: 169230, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38072266

RESUMEN

Tetragnathid spiders have been used as sentinels to study the biotransport of contaminants between aquatic and terrestrial environments because a significant proportion of their diet consists of adult aquatic insects. A key knowledge gap in assessing tetragnathid spiders as sentinels is understanding the consistency of the year-to-year relationship between contaminant concentrations in spiders and sediment, water, and macroinvertebrates. We collected five years of data over a seven-year investigation at a PCB contaminated-sediment site to investigate if concentrations in spiders were consistently correlated with concentrations in sediment, water, and aquatic macroinvertebrates. Despite significant year-to-year variability in spider PCB concentrations, they were not correlated with sediment concentrations (p = 0.186). However, spider PCB concentrations were significantly, positively correlated with PCB concentrations in water (p < 0.0001, annual r2 = 0.35-0.84) and macroinvertebrates (p < 0.0001; annual r2 = 0.59-0.71). Analysis of covariance (ANCOVA) showed that spider PCB concentrations varied consistently with water (ß = 0.63) and macroinvertebrate PCB concentrations (ß = 1.023) among years. Overall, this study filled a critical knowledge gap in the utilization of tetragnathid spiders as sentinels of aquatic pollution by showing that despite year-to-year changes in PCB concentrations across environmental compartments, consistent relationships existed between spiders and water and aquatic macroinvertebrates.


Asunto(s)
Arañas , Agua , Animales , Monitoreo del Ambiente , Insectos , Contaminación Ambiental , Cadena Alimentaria
2.
Freshw Sci ; 42(3): 247-267, 2023 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-37842168

RESUMEN

Streamflow-duration assessment methods (SDAMs) are rapid, indicator-based tools for classifying streamflow duration (e.g., intermittent vs perennial flow) at the reach scale. Indicators are easily assessed stream properties used as surrogates of flow duration, which is too resource intensive to measure directly for many reaches. Invertebrates are commonly used as SDAM indicators because many are not highly mobile, and different species have life stages that require flow for different durations and times of the year. The objectives of this study were to 1) identify invertebrate taxa that can be used as SDAM indicators to distinguish between stream reaches having intermittent and perennial flow, 2) to compare indicator strength across different taxonomic and numeric resolutions, and 3) to assess the relative importance of season and habitat type on the ability of invertebrates to predict streamflow-duration class. We used 2 methods, random forest models and indicator species analysis, to analyze aquatic and terrestrial invertebrate data (presence/absence, density, and biomass) at the family and genus levels from 370 samples collected from both erosional and depositional habitats during both wet and dry seasons. In total, 36 intermittent and 53 perennial reaches were sampled along 31 forested headwater streams in 4 level II ecoregions across the United States. Random forest models for family- and genus-level datasets had stream classification accuracy ranging from 88.9 to 93.2%, with slightly higher accuracy for density than for presence/absence and biomass datasets. Season (wet/dry) tended to be a stronger predictor of streamflow-duration class than habitat (erosional/depositional). Many taxa at the family (58.8%) and genus level (61.6%) were collected from both intermittent and perennial reaches, and most taxa that were exclusive to 1 streamflow-duration class were rarely collected. However, 23 family-level or higher taxa (20 aquatic and 3 terrestrial) and 44 aquatic genera were identified as potential indicators of streamflow-duration class for forested headwater streams. The utility of the potential indicators varied across level II ecoregions in part because of representation of intermittent and perennial reaches in the dataset but also because of variable ecological responses to drying among species. Aquatic invertebrates have been an important field indicator of perennial reaches in existing SDAMs, but our findings highlight how including aquatic and terrestrial invertebrates as indicators of intermittent reaches can further maximize the data collected for streamflow-duration classifications.

4.
Front Water ; 4: 1-19, 2023 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-36969749

RESUMEN

Mountaintop removal coal mining (MTR) has been a major source of landscape change in the Central Appalachians of the United States (US). Changes in stream hydrology, channel geomorphology and water quality caused by MTR coal mining can lead to severe impairment of stream ecological integrity. The objective of the Clean Water Act (CWA) is to restore and maintain the ecological integrity of the Nation's waters. Sensitive, readily measured indicators of ecosystem structure and function are needed for the assessment of stream ecological integrity. Most CWA assessments rely on structural indicators; inclusion of functional indicators could make these assessments more holistic and effective. The goals of this study were: (1) test the efficacy of selected carbon (C) and nitrogen (N) cycling and microbial structural and functional indicators for assessing MTR coal mining impacts on streams; (2) determine whether indicators respond to impacts in a predictable manner; and (3) determine if functional indicators are less likely to change than are structural indicators in response to stressors associated with MTR coal mining. The structural indicators are water quality and sediment organic matter concentrations, and the functional indicators relate to microbial activity and biofilm production. Seasonal measurements were conducted over the course of a year in streams draining small MTR-impacted and forested watersheds in the Twentymile Creek watershed of West Virginia (WV). Five of the eight structural parameters measured had significant responses, with all means greater in the MTR-impacted streams than in the forested streams. These responses resulted from changes in source or augmentation of the original source of the C and N structural parameters because of MTR coal mining. Nitrate concentration and the stable carbon isotopic ratio of dissolved inorganic carbon were the most effective indicators evaluated in this study. Only three of the fourteen functional indicators measured had significant responses to MTR coal mining, with all means greater in the forested streams than in the MTR-impacted streams. These results suggest that stressors associated with MTR coal mining caused reduction in some aspects of microbial cycling, but resource subsidies may have counterbalanced some of the inhibition leading to no observable change in most of the functional indicators. The detritus base, which is thought to confer functional stability, was likely sustained in the MTR-impacted streams by channel storage and/or leaf litter inputs from their largely intact riparian zones. Overall, our results largely support the hypothesis that certain functional processes are more resistant to stress induced change than structural properties but also suggest the difficulty of identifying suitable functional indicators for ecological integrity assessment.

5.
Environ Toxicol Chem ; 42(2): 414-420, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36420666

RESUMEN

Polychlorinated dibenzo-p-dioxin and polychlorinated dibenzofuran (PCDD/F) are persistent, toxic, and bioaccumulative. Currently, PCDD/F monitoring programs primarily use fish and birds with potentially large home ranges to monitor temporal trends over broad spatial scales; sentinel organisms that provide targeted sediment contaminant information across small geographic areas have yet to be developed. Riparian orb-weaving spiders, which typically have small home ranges and consume primarily adult aquatic insects, are potential PCDD/F sentinels. Recent studies have demonstrated that spider tissue concentrations indicate the source and magnitude of dioxin-like chlorinated compounds in contaminated sediments, including polychlorinated biphenyls (PCBs). Our aim in the present study was to assess the utility of riparian spiders as sentinels for PCDD/F-contaminated sediments. We measured PCDD/F (total [Σ] and homologs) in surface sediments and spiders collected from three sites within the St. Louis River basin (Minnesota and Wisconsin, USA). We then compared (1) patterns in ΣPCDD/F concentrations between sediment and spiders, (2) the distribution of homologs within sediments and spiders when pooled across sites, and (3) the relationship between sediment and spider concentrations of PCDD/F homologs across 13 stations sampled across the three sites. The ΣPCDD/F concentrations in sediment (mean ± standard error 286 591 ± 97 614 pg/g) were significantly higher than those in riparian spiders (2463 ± 977 pg/g, p < 0.001), but the relative abundance of homologs in sediment and spiders were not significantly different. Spider homolog concentrations were significantly and positively correlated with sediment concentrations across a gradient of sediment PCDD/F contamination (R2 = 0.47, p < 0.001). Our results indicate that, as has been shown for other legacy organic chemicals like PCBs, riparian spiders are suitable sentinels of PCDD/F in contaminated sediment. Environ Toxicol Chem 2023;42:414-420. © 2022 SETAC. This article has been contributed to by U.S. Government employees and their work is in the public domain in the USA.


Asunto(s)
Dioxinas , Bifenilos Policlorados , Dibenzodioxinas Policloradas , Arañas , Animales , Sedimentos Geológicos/química , Arañas/química , Bifenilos Policlorados/análisis , Dibenzodioxinas Policloradas/toxicidad , Dibenzofuranos , Dibenzofuranos Policlorados
6.
Nat Sustain ; 5: 586-592, 2022 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-36213515

RESUMEN

Knowing where and when rivers flow is paramount to managing freshwater ecosystems. Yet stream gauging stations are distributed sparsely across rivers globally and may not capture the diversity of fluvial network properties and anthropogenic influences. Here we evaluate the placement bias of a global stream gauge dataset on its representation of socioecological, hydrologic, climatic and physiographic diversity of rivers. We find that gauges are located disproportionally in large, perennial rivers draining more human-occupied watersheds. Gauges are sparsely distributed in protected areas and rivers characterized by non-perennial flow regimes, both of which are critical to freshwater conservation and water security concerns. Disparities between the geography of the global gauging network and the broad diversity of streams and rivers weakens our ability to understand critical hydrologic processes and make informed water-management and policy decisions. Our findings underscore the need to address current gauge placement biases by investing in and prioritizing the installation of new gauging stations, embracing alternative water-monitoring strategies, advancing innovation in hydrologic modelling, and increasing accessibility of local and regional gauging data to support human responses to water challenges, both today and in the future.

7.
Glob Ecol Conserv ; 37: 1-15, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-36117514

RESUMEN

Beaver are recolonizing previously occupied regions, expanding into new territories, and increasingly being introduced and protected for stream conservation and restoration across numerous biomes. However, beaver dam effects on the physical, chemical, and biological characteristics of streams may vary within and among biomes. A comprehensive review of these impacts is lacking. The goals of this review were to: 1) summarize the distribution of studies by biome on beaver dam effects related to channel morphology, hydrology, water quality, and aquatic biota, as well as on beaver habitat selection, 2) summarize the extent to which beaver dam impacts have been consistent within and among biomes, and 3) share testable hypotheses regarding beaver impacts within understudied biomes. We quantify the directionality of beaver dam impacts from 267 peer-reviewed studies. Results show that the majority of studies have been completed within temperate forest environments and that many biomes are understudied. Across biomes, beaver preferred sites for dam development characterized by relatively low gradients and unconfined reaches with small drainage areas. Overall, parameters related to stream morphology and hydrology showed relatively consistent responses to beaver dams within and among biomes, yet water quality and biotic responses were variable among biomes. Responses also varied by parameter within water quality and biotic impact categories. The findings of this study can be useful for stream conservation and restoration efforts that introduce or protect beaver. Additional studies are needed within arid and cold biomes historically occupied by beaver and in novel biomes where beaver populations are currently expanding.

8.
Freshw Sci ; 41(2): 167-182, 2022 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-35846249

RESUMEN

Nonperennial streams dominate global river networks and are increasing in occurrence across space and time. When surface flow ceases or the surface water dries, flow or moisture can be retained in the subsurface sediments of the hyporheic zone, supporting aquatic communities and ecosystem processes. However, hydrological and ecological definitions of the hyporheic zone have been developed in perennial rivers and emphasize the mixing of water and organisms, respectively, from both the surface stream and groundwater. The adaptation of such definitions to include both humid and dry unsaturated conditions could promote characterization of how hydrological and biogeochemical variability shape ecological communities within nonperennial hyporheic zones, advancing our understanding of both ecosystem structure and function in these habitats. To conceptualize hyporheic zones for nonperennial streams, we review how water sources and surface and subsurface structure influence hydrological and physicochemical conditions. We consider the extent of this zone and how biogeochemistry and ecology might vary with surface states. We then link these components to the composition of nonperennial stream communities. Next, we examine literature to identify priorities for hydrological and ecological research exploring nonperennial hyporheic zones. Lastly, by integrating hydrology, biogeochemistry, and ecology, we recommend a multidisciplinary conceptualization of the nonperennial hyporheic zone as the porous subsurface streambed sediments that shift between lotic, lentic, humid, and dry conditions in space and time to support aquatic-terrestrial biodiversity. As river drying increases in extent because of global change, we call for holistic, interdisciplinary research across the terrestrial and aquatic sciences to apply this conceptualization to characterize hyporheic zone structure and function across the full spectrum of hydrological states.

9.
Sci Total Environ ; 819: 153050, 2022 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-35038529

RESUMEN

Stream burial, the rerouting of streams into underground culverts, is common in industrialized and densely populated urban areas. While stream burial is common in urban environments, direct characterization of the within-culvert environment is rare and it is unclear if buried reaches reflect neighboring open reaches regarding habitat, biota, and water chemistry. Additionally, for a buried stream, the entrance and exit of the culvert are abrupt habitat transitions within the stream channel, and it is unknown if these transitions lead to similarly abrupt responses in biotic and abiotic characteristics or if responses are gradual. Quantifying the within-culvert environment and transitions upon entering/exiting the culvert has rarely been done but can help inform management practices regarding how these systems are impacted and establish a baseline for evaluating daylighting or stream restoration projects. To understand how culverts affect longitudinal biotic and abiotic characteristics of urban streams, we evaluated longitudinal patterns of physical habitat characteristics, stream water physiochemistry, periphyton biomass, and macroinvertebrate density and diversity in two urban streams that included long (>100 m) culvert reaches. Abrupt transitions in a suite of abiotic and biotic variables were observed at the entrances and exits of the culverts whereas some variables showed no response to the culvert presence. Periphyton biomass and macroinvertebrate density were reduced by 98% and 92%, respectively, by culverts in the two streams. Within the culverts, we observed greater water depths (average of 10 cm outside vs 26 cm within the culvert), finer benthic substrate, and diversity of macroinvertebrates was reduced by 50%. Nutrient concentrations, in contrast, showed no response to the presence of a culvert. Within 60-90 m downstream of the culvert exits, most of the measured parameters returned to levels similar to those observed upstream of the culvert, suggesting that the ecosystem impacts of urban culverts, though dramatic, may be spatially constrained.


Asunto(s)
Biodiversidad , Ecosistema , Invertebrados , Ríos , Animales , Biomasa , Ciudades , Monitoreo del Ambiente , Agua Subterránea , Invertebrados/fisiología
10.
Earth Sci Rev ; 235: 1-24, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36970305

RESUMEN

Headwater streams and inland wetlands provide essential functions that support healthy watersheds and downstream waters. However, scientists and aquatic resource managers lack a comprehensive synthesis of national and state stream and wetland geospatial datasets and emerging technologies that can further improve these data. We conducted a review of existing United States (US) federal and state stream and wetland geospatial datasets, focusing on their spatial extent, permanence classifications, and current limitations. We also examined recent peer-reviewed literature for emerging methods that can potentially improve the estimation, representation, and integration of stream and wetland datasets. We found that federal and state datasets rely heavily on the US Geological Survey's National Hydrography Dataset for stream extent and duration information. Only eleven states (22%) had additional stream extent information and seven states (14%) provided additional duration information. Likewise, federal and state wetland datasets primarily use the US Fish and Wildlife Service's National Wetlands Inventory (NWI) Geospatial Dataset, with only two states using non-NWI datasets. Our synthesis revealed that LiDAR-based technologies hold promise for advancing stream and wetland mapping at limited spatial extents. While machine learning techniques may help to scale-up these LiDAR-derived estimates, challenges related to preprocessing and data workflows remain. High-resolution commercial imagery, supported by public imagery and cloud computing, may further aid characterization of the spatial and temporal dynamics of streams and wetlands, especially using multi-platform and multi-temporal machine learning approaches. Models integrating both stream and wetland dynamics are limited, and field-based efforts must remain a key component in developing improved headwater stream and wetland datasets. Continued financial and partnership support of existing databases is also needed to enhance mapping and inform water resources research and policy decisions.

11.
Ecography ; 44(10): 1511-1523, 2021 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-34720401

RESUMEN

The current erosion of biodiversity is a major concern that threatens the ecological integrity of ecosystems and the ecosystem services they provide. Due to global change, an increasing proportion of river networks are drying and changes from perennial to non-perennial flow regimes represent dramatic ecological shifts with potentially irreversible alterations of community and ecosystem dynamics. However, there is minimal understanding of how biological communities respond functionally to drying. Here, we highlight the taxonomic and functional responses of aquatic macroinvertebrate communities to flow intermittence across river networks from three continents, to test predictions from underlying trait-based conceptual theory. We found a significant breakpoint in the relationship between taxonomic and functional richness, indicating higher functional redundancy at sites with flow intermittence higher than 28%. Multiple strands of evidence, including patterns of alpha and beta diversity and functional group membership, indicated that functional redundancy did not compensate for biodiversity loss associated with increasing intermittence, contrary to received wisdom. A specific set of functional trait modalities, including small body size, short life span and high fecundity, were selected with increasing flow intermittence. These results demonstrate the functional responses of river communities to drying and suggest that on-going biodiversity reduction due to global change in drying river networks is threatening their functional integrity. These results indicate that such patterns might be common in these ecosystems, even where drying is considered a predictable disturbance. This highlights the need for the conservation of natural drying regimes of intermittent rivers to secure their ecological integrity.

12.
Water (Basel) ; 13(12): 1-20, 2021 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-35342643

RESUMEN

Observations of the presence or absence of surface water in streams are useful for characterizing streamflow permanence, which includes the frequency, duration, and spatial extent of surface flow in streams and rivers. Such data are particularly valuable for headwater streams, which comprise the vast majority of channel length in stream networks, are often non-perennial, and are frequently the most data deficient. Datasets of surface water presence exist across multiple data collection groups in the United States but are not well aligned for easy integration. Given the value of these data, a unified approach for organizing information on surface water presence and absence collected by diverse surveys would facilitate more effective and broad application of these data and address the gap in streamflow data in headwaters. In this paper, we highlight the numerous existing datasets on surface water presence in headwater streams, including recently developed crowdsourcing approaches. We identify the challenges of integrating multiple surface water presence/absence datasets that include differences in the definitions and categories of streamflow status, data collection method, spatial and temporal resolution, and accuracy of geographic location. Finally, we provide a list of critical and useful components that could be used to integrate different streamflow permanence datasets.

13.
Water (Basel) ; 13(22): 1-40, 2021 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-34976403

RESUMEN

Streamflow duration information underpins many management decisions. However, hydrologic data are rarely available where needed. Rapid streamflow duration assessment methods (SDAMs) classify reaches based on indicators that are measured in a single brief visit. We evaluated a proposed framework for developing SDAMs to develop an SDAM for the Arid West United States that can classify reaches as perennial, intermittent, or ephemeral. We identified 41 candidate biological, geomorphological, and hydrological indicators of streamflow duration in a literature review, evaluated them for a number of desirable criteria (e.g., defensibility and consistency), and measured 21 of them at 89 reaches with known flow durations. We selected metrics for the SDAM based on their ability to discriminate among flow duration classes in analyses of variance, as well as their importance in a random forest model to predict streamflow duration. This approach resulted in a "beta" SDAM that uses five biological indicators. It could discriminate between ephemeral and non-ephemeral reaches with 81% accuracy, but only 56% accuracy when distinguishing 3 classes. A final method will be developed following expanded data collection. This Arid West study demonstrates the effectiveness of our approach and paves the way for more efficient development of scientifically informed SDAMs.

14.
WIREs Water ; 7(5)2020 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-33365126

RESUMEN

Conceptual models underpin river ecosystem research. However, current models focus on continuously flowing rivers and few explicitly address characteristics such as flow cessation and drying. The applicability of existing conceptual models to nonperennial rivers that cease to flow (intermittent rivers and ephemeral streams, IRES) has not been evaluated. We reviewed 18 models, finding that they collectively describe main drivers of biogeochemical and ecological patterns and processes longitudinally (upstream-downstream), laterally (channel-riparian-floodplain), vertically (surface water-groundwater), and temporally across local and landscape scales. However, perennial rivers are longitudinally continuous while IRES are longitudinally discontinuous. Whereas perennial rivers have bidirectional lateral connections between aquatic and terrestrial ecosystems, in IRES, this connection is unidirectional for much of the time, from terrestrial-to-aquatic only. Vertical connectivity between surface and subsurface water occurs bidirectionally and is temporally consistent in perennial rivers. However, in IRES, this exchange is temporally variable, and can become unidirectional during drying or rewetting phases. Finally, drying adds another dimension of flow variation to be considered across temporal and spatial scales in IRES, much as flooding is considered as a temporally and spatially dynamic process in perennial rivers. Here, we focus on ways in which existing models could be modified to accommodate drying as a fundamental process that can alter these patterns and processes across spatial and temporal dimensions in streams. This perspective is needed to support river science and management in our era of rapid global change, including increasing duration, frequency, and occurrence of drying.

15.
Water (Basel) ; 12(7): 1980, 2020 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-33274073

RESUMEN

Rivers that cease to flow are globally prevalent. Although many epithets have been used for these rivers, a consensus on terminology has not yet been reached. Doing so would facilitate a marked increase in interdisciplinary interest as well as critical need for clear regulations. Here we reviewed literature from Web of Science database searches of 12 epithets to learn (Objective 1-O1) if epithet topics are consistent across Web of Science categories using latent Dirichlet allocation topic modeling. We also analyzed publication rates and topics over time to (O2) assess changes in epithet use. We compiled literature definitions to (O3) identify how epithets have been delineated and, lastly, suggest universal terms and definitions. We found a lack of consensus in epithet use between and among various fields. We also found that epithet usage has changed over time, as research focus has shifted from description to modeling. We conclude that multiple epithets are redundant. We offer specific definitions for three epithets (non-perennial, intermittent, and ephemeral) to guide consensus on epithet use. Limiting the number of epithets used in non-perennial river research can facilitate more effective communication among research fields and provide clear guidelines for writing regulatory documents.

16.
Water (Basel) ; 12(9): 1-2545, 2020 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-33133647

RESUMEN

Streamflow duration is used to differentiate reaches into discrete classes (e.g., perennial, intermittent, and ephemeral) for water resource management. Because the depiction of the extent and flow duration of streams via existing maps, remote sensing, and gauging is constrained, field-based tools are needed for use by practitioners and to validate hydrography and modeling advances. Streamflow Duration Assessment Methods (SDAMs) are rapid, reach-scale indices or models that use physical and biological indicators to predict flow duration class. We review the scientific basis for indicators and present conceptual and operational frameworks for SDAM development. Indicators can be responses to or controls of flow duration. Aquatic and terrestrial responses can be integrated into SDAMs, reflecting concurrent increases and decreases along the flow duration gradient. The conceptual framework for data-driven SDAM development shows interrelationships among the key components: study reaches, hydrologic data, and indicators. We present a generalized operational framework for SDAM development that integrates the data-driven components through five process steps: preparation, data collection, data analysis, evaluation, and implementation. We highlight priorities for the advancement of SDAMs, including expansion of gauging of nonperennial reaches, use of citizen science data, adjusting for stressor gradients, and statistical and monitoring advances to improve indicator effectiveness.

17.
J Environ Prot (Irvine, Calif) ; 11(8): 585-609, 2020 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-32944408

RESUMEN

The unique challenges associated with sampling of macroinvertebrates in flashy urban streams create a methods gap. These streams form isolated pools for much of the year, interspersed with spates that scour and deposit excessive amounts of sediment. Commonly used stream grab sampling methods, such as nets and Hess and Surber fixed-area samplers, work well in wadable streams with perennial flow. Deployed samplers (Hester-Dendy, gravel tray) can be used in waters with or without flow. We evaluated three methods which don't require stream flow: modified Hester-Dendy (MHD), gravel tray, and bucket (a type of cylinder grab sample method), for their potential use in bioassessment of a project involving daylighting of a 180-m culvert on Congress Run, a flashy urban tributary to Mill Creek in Cincinnati, Ohio. Method efficacy was measured using three criteria: usability (level of effort and recoverability of samplers), variability, and community retrieval completeness. The bucket method required the lowest level of effort and had the highest sample recovery. The bucket sampler had the lowest variability for most metrics, including the critical metric of taxa richness, with a coefficient of variation (CV) of 20.9%. The MHD and tray samplers had taxa richness CVs of 42.9% and 53.9%, respectively. The bucket sampler also had the lowest CV (27.4%) for a multi-metric index. The bucket sampler performed best with respect to community retrieval completeness, with higher pooled and average taxa richness. The total number of taxa collected from all the replicate bucket grab samples (42) was greater than that collected by the HD and tray samplers combined (27). Multivariate analyses showed significant grouping with respect to methods and location. This study supports the bucket grab sampler method as a candidate for sampling of flashy urban streams.

18.
WIREs Water ; 7(3)2020 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-32802326

RESUMEN

Streamflow observations can be used to understand, predict, and contextualize hydrologic, ecological, and biogeochemical processes and conditions in streams. Stream gages are point measurements along rivers where streamflow is measured, and are often used to infer upstream watershed-scale processes. When stream gages read zero, this may indicate that the stream has fully dried; however, zero-flow readings can also be caused by a wide range of other factors. Our ability to identify whether or not a zero-flow gage reading indicates a dry fluvial system has far reaching environmental implications. Incorrect identification and interpretation by the data user can lead to hydrologic, ecological, and/or biogeochemical predictions from models and analyses. Here, we describe several causes of zero-flow gage readings: frozen surface water, flow reversals, instrument error, and natural or human-driven upstream source losses or bypass flow. For these examples, we discuss the implications of zero-flow interpretations. We also highlight additional methodss for determining flow presence, including direct observations, statistical methods, and hydrologic models, which can be applied to interpret causes of zero-flow gage readings and implications for reach- and watershed-scale dynamics. Such efforts are necessary to improve our ability to understand and predict surface flow activation, cessation, and connectivity across river networks. Developing this integrated understanding of the wide range of possible meanings of zero-flows will only attain greater importance in a more variable and changing hydrologic climate.

19.
Environ Manage ; 66(1): 121-135, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32367489

RESUMEN

Cattle degrade streams by increasing sediment, nutrient, and fecal bacteria levels. Riparian fencing is one best management practice that may protect water quality within many grazed lands. Here we surveyed the literature and summarized the responses of sediment, nutrient, and fecal indicator bacteria levels to riparian exclosure fencing in cattle-grazed lands. Overall, our review of relevant literature supports the role of riparian exclosure fencing in reducing the negative impact of cattle on water quality, particularly for sediment and fecal indicator bacteria in temperate forest and temperate grassland streams. Establishing buffer widths > 5-10 m appears to increase the likelihood of water quality improvements. Fencing may also be effective at reducing pollutant inputs during stormflows. Our survey also identified critical spatial and thematic gaps that future research programs should address. Despite cattle grazing being prevalent in 12 terrestrial biomes, our systematic search of the empirical literature identified 26 relevant studies across only three biomes. Regions with the greatest cattle populations remain largely unstudied. In addition, we identified inconsistencies in how studies reported information on regional factors, cattle management, and other metrics related to study results. We provide a list of standard parameters for future studies to consider reporting to improve cross-study comparisons of riparian fencing impacts. We also encourage future studies in semi-arid and tropical regions where cattle grazing is common.


Asunto(s)
Ríos , Calidad del Agua , Animales , Bovinos , Conservación de los Recursos Naturales , Heces , Bosques
20.
J Am Water Resour Assoc ; 55(2): 307-317, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-31787838

RESUMEN

We describe a collection of aquatic and wetland habitats in an inland landscape, and their occurrence within a terrestrial matrix, as a "freshwater ecosystem mosaic" (FEM). Aquatic and wetland habitats in any FEM can vary widely, from permanently ponded lakes, to ephemerally ponded wetlands, to groundwater-fed springs, to flowing rivers and streams. The terrestrial matrix can also vary, including in its influence on flows of energy, materials, and organisms among ecosystems. Biota occurring in a specific region are adapted to the unique opportunities and challenges presented by spatial and temporal patterns of habitat types inherent to each FEM. To persist in any given landscape, most species move to recolonize habitats and maintain mixtures of genetic materials. Species also connect habitats through time if they possess needed morphological, physiological, or behavioral traits to persist in a habitat through periods of unfavorable environmental conditions. By examining key spatial and temporal patterns underlying FEMs, and species-specific adaptations to these patterns, a better understanding of the structural and functional connectivity of a landscape can be obtained. Fully including aquatic, wetland, and terrestrial habitats in FEMs facilitates adoption of the next generation of individual-based models that integrate the principles of population, community, and ecosystem ecology.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...