Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 120(32): e2300514120, 2023 08 08.
Artículo en Inglés | MEDLINE | ID: mdl-37523540

RESUMEN

Herbivorous arthropods are the most diverse group of multicellular organisms on Earth. The most discussed drivers of their inordinate taxonomic and functional diversity are high niche availability associated with the diversity of host plants and dense niche packing due to host partitioning among herbivores. However, the relative contributions of these two factors to dynamics in the diversity of herbivores throughout Earth's history remain unresolved. Using fossil data on herbivore-induced leaf damage from across the Cenozoic, we infer quantitative bipartite interaction networks between plants and functional feeding types of herbivores. We fit a general model of diversity to these interaction networks and discover that host partitioning among functional groups of herbivores contributed twice as much to herbivore functional diversity as host diversity. These findings indicate that niche packing primarily shaped the dynamics in the functional diversity of herbivores during the past 66 my. Our study highlights how the fossil record can be used to test fundamental theories of biodiversity and represents a benchmark for assessing the drivers of herbivore functional diversity in modern ecosystems.


Asunto(s)
Artrópodos , Herbivoria , Animales , Ecosistema , Fósiles , Biodiversidad , Hojas de la Planta , Plantas
2.
Proc Biol Sci ; 289(1979): 20212184, 2022 07 27.
Artículo en Inglés | MEDLINE | ID: mdl-35855601

RESUMEN

Ongoing climate change is a major threat to biodiversity. As abiotic tolerances and dispersal abilities vary, species-specific responses have the potential to further amplify or ameliorate the ensuing impacts on species assemblages. Here, we investigate the effects of climate change on species distributions across non-marine birds, quantifying its projected impact on species richness (SR) as well as on different aspects of phylogenetic diversity globally. Going beyond previous work, we disentangle the potential impacts of species gains versus losses on assemblage-level phylogenetic diversity under climate change and compare the projected impacts to randomized assemblage changes. We show that beyond its effects on SR, climate change could have profound impacts on assemblage-level phylogenetic diversity and composition, which differ significantly from random changes and among regions. Though marked species losses are most frequent in tropical and subtropical areas in our projections, phylogenetic restructuring of species communities is likely to occur all across the globe. Furthermore, our results indicate that the most severe changes to the phylogenetic diversity of local assemblages are likely to be caused by species range shifts and local species gains rather than range reductions and extinctions. Our findings highlight the importance of considering diverse measures in climate impact assessments.


Asunto(s)
Aves , Cambio Climático , Animales , Biodiversidad , Aves/fisiología , Ecosistema , Predicción , Filogenia
3.
Ecol Lett ; 25(3): 686-696, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35199916

RESUMEN

Species interactions are influenced by the trait structure of local multi-trophic communities. However, it remains unclear whether mutualistic interactions in particular can drive trait patterns at the global scale, where climatic constraints and biogeographic processes gain importance. Here we evaluate global relationships between traits of frugivorous birds and palms (Arecaceae), and how these relationships are affected, directly or indirectly, by assemblage richness, climate and biogeographic history. We leverage a new and expanded gape size dataset for nearly all avian frugivores, and find a positive relationship between gape size and fruit size, that is, trait matching, which is influenced indirectly by palm richness and climate. We also uncover a latitudinal gradient in trait matching strength, which increases towards the tropics and varies among zoogeographic realms. Taken together, our results suggest trophic interactions have consistent influences on trait structure, but that abiotic, biogeographic and richness effects also play important, though sometimes indirect, roles in shaping the functional biogeography of mutualisms.


Asunto(s)
Arecaceae , Dispersión de Semillas , Animales , Aves , Frutas , Simbiosis
4.
Evolution ; 75(5): 1046-1060, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33724456

RESUMEN

Climatic niches describe the climatic conditions in which species can persist. Shifts in climatic niches have been observed to coincide with major climatic change, suggesting that species adapt to new conditions. We test the relationship between rates of climatic niche evolution and paleoclimatic conditions through time for 65 Old-World flycatcher species (Aves: Muscicapidae). We combine niche quantification for all species with dated phylogenies to infer past changes in the rates of niche evolution for temperature and precipitation niches. Paleoclimatic conditions were inferred independently using two datasets: a paleoelevation reconstruction and the mammal fossil record. We find changes in climatic niches through time, but no or weak support for a relationship between niche evolution rates and rates of paleoclimatic change for both temperature and precipitation niche and for both reconstruction methods. In contrast, the inferred relationship between climatic conditions and niche evolution rates depends on paleoclimatic reconstruction method: rates of temperature niche evolution are significantly negatively related to absolute temperatures inferred using the paleoelevation model but not those reconstructed from the fossil record. We suggest that paleoclimatic change might be a weak driver of climatic niche evolution in birds and highlight the need for greater integration of different paleoclimate reconstructions.


Asunto(s)
Cambio Climático , Ecosistema , Pájaros Cantores/clasificación , Altitud , Animales , Evolución Biológica , Filogenia , Pájaros Cantores/fisiología
5.
Ecol Evol ; 10(21): 11983-11997, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-33209264

RESUMEN

The question of whether migratory birds track a specific climatic niche by seasonal movements has important implications for understanding the evolution of migration, the factors affecting species' distributions, and the responses of migrants to climate change. Despite much research, previous studies of bird migration have produced mixed results. However, whether migrants track climate is only one half of the question, the other being why residents remain in the same geographic range year-round. We provide a literature overview and test the hypothesis of seasonal niche tracking by evaluating seasonal climatic niche overlap across 437 migratory and resident species from eight clades of passerine birds. Seasonal climatic niches were based on a new global dataset of breeding and nonbreeding ranges. Overlap between climatic niches was quantified using ordination methods. We compared niche overlap of migratory species to two null expectations, (a) a scenario in which they do not migrate and (b) in comparison with the overlap experienced by closely related resident species, while controlling for breeding location and range size. Partly in accordance with the hypothesis of niche tracking, we found that the overlap of breeding versus nonbreeding climatic conditions in migratory species was greater than the overlap they would experience if they did not migrate. However, this was only true for migrants breeding outside the tropics and only relative to the overlap species would experience if they stayed in the breeding range year-round. In contrast to the hypothesis of niche tracking, migratory species experienced lower seasonal climatic niche overlap than resident species, with significant differences between tropical and nontropical species. Our study suggests that in seasonal nontropical environments migration away from the breeding range may serve to avoid seasonally harsh climate; however, different factors may drive seasonal movements in the climatically more stable tropical regions.

6.
Trends Ecol Evol ; 35(4): 319-328, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31987640

RESUMEN

Plant-animal interactions are fundamentally important in ecosystems, but have often been ignored by studies of climate-change impacts on biodiversity. Here, we present a trait-based framework for predicting the responses of interacting plants and animals to climate change. We distinguish three pathways along which climate change can impact interacting species in ecological communities: (i) spatial and temporal mismatches in the occurrence and abundance of species, (ii) the formation of novel interactions and secondary extinctions, and (iii) alterations of the dispersal ability of plants. These pathways are mediated by three kinds of functional traits: response traits, matching traits, and dispersal traits. We propose that incorporating these traits into predictive models will improve assessments of the responses of interacting species to climate change.


Asunto(s)
Cambio Climático , Ecosistema , Animales , Biodiversidad , Plantas
7.
Ecol Evol ; 10(24): 14196-14208, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33391710

RESUMEN

AIM: Although patterns of biodiversity across the globe are well studied, there is still a controversial debate about the underlying mechanisms and their generality across biogeographic scales. In particular, it is unclear to what extent diversity patterns along environmental gradients are directly driven by abiotic factors, such as climate, or indirectly mediated through biotic factors, such as resource effects on consumers. LOCATION: Andes, Southern Ecuador; Mt. Kilimanjaro, Tanzania. METHODS: We studied the diversity of fleshy-fruited plants and avian frugivores at the taxonomic level, that is, species richness and abundance, as well as at the level of functional traits, that is, functional richness and functional dispersion. We compared two important biodiversity hotspots in mountain systems of the Neotropics and Afrotropics. We used field data of plant and bird communities, including trait measurements of 367 plant and bird species. Using structural equation modeling, we disentangled direct and indirect effects of climate and the diversity of plant communities on the diversity of bird communities. RESULTS: We found significant bottom-up effects of fruit diversity on frugivore diversity at the taxonomic level. In contrast, climate was more important for patterns of functional diversity, with plant communities being mostly related to precipitation, and bird communities being most strongly related to temperature. MAIN CONCLUSIONS: Our results illustrate the general importance of bottom-up mechanisms for the taxonomic diversity of consumers, suggesting the importance of active resource tracking. Our results also suggest that it might be difficult to identify signals of ecological fitting between functional plant and animal traits across biogeographic regions, since different species groups may respond to different climatic drivers. This decoupling between resource and consumer communities could increase under future climate change if plant and animal communities are consistently related to distinct climatic drivers.

8.
Trends Ecol Evol ; 34(3): 211-223, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30591209

RESUMEN

The latitudinal diversity gradient (LDG) is one of the most widely studied patterns in ecology, yet no consensus has been reached about its underlying causes. We argue that the reasons for this are the verbal nature of existing hypotheses, the failure to mechanistically link interacting ecological and evolutionary processes to the LDG, and the fact that empirical patterns are often consistent with multiple explanations. To address this issue, we synthesize current LDG hypotheses, uncovering their eco-evolutionary mechanisms, hidden assumptions, and commonalities. Furthermore, we propose mechanistic eco-evolutionary modeling and an inferential approach that makes use of geographic, phylogenetic, and trait-based patterns to assess the relative importance of different processes for generating the LDG.


Asunto(s)
Biodiversidad , Evolución Biológica , Ecología , Modelos Biológicos , Distribución Animal , Geografía , Rasgos de la Historia de Vida , Filogenia , Dispersión de las Plantas
9.
Science ; 359(6374): 466-469, 2018 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-29371471

RESUMEN

Animal movement is fundamental for ecosystem functioning and species survival, yet the effects of the anthropogenic footprint on animal movements have not been estimated across species. Using a unique GPS-tracking database of 803 individuals across 57 species, we found that movements of mammals in areas with a comparatively high human footprint were on average one-half to one-third the extent of their movements in areas with a low human footprint. We attribute this reduction to behavioral changes of individual animals and to the exclusion of species with long-range movements from areas with higher human impact. Global loss of vagility alters a key ecological trait of animals that affects not only population persistence but also ecosystem processes such as predator-prey interactions, nutrient cycling, and disease transmission.


Asunto(s)
Migración Animal , Actividades Humanas , Mamíferos , Animales , Sistemas de Información Geográfica , Humanos
10.
Proc Biol Sci ; 284(1849)2017 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-28202809

RESUMEN

Because body size interacts with many fundamental biological properties of a species, body size evolution can be an essential component of the generation and maintenance of biodiversity. Here we investigate how body size evolution can be linked to the clade-specific diversification dynamics in different geographical regions. We analyse an extensive body size dataset of Neogene large herbivores (covering approx. 50% of the 970 species in the orders Artiodactyla and Perissodactyla) in Europe and North America in a Bayesian framework. We reconstruct the temporal patterns of body size in each order on each continent independently, and find significant increases of minimum size in three of the continental assemblages (except European perissodactyls), suggesting an active selection for larger bodies. Assessment of trait-correlated birth-death models indicates that the common trend of body size increase is generated by different processes in different clades and regions. Larger-bodied artiodactyl species on both continents tend to have higher origination rates, and both clades in North America show strong links between large bodies and low extinction rate. Collectively, our results suggest a strong role of species selection and perhaps of higher-taxon sorting in driving body size evolution, and highlight the value of investigating evolutionary processes in a biogeographic context.


Asunto(s)
Evolución Biológica , Tamaño Corporal , Mamíferos/anatomía & histología , Animales , Teorema de Bayes , Europa (Continente) , América del Norte , Filogenia
11.
Biol Rev Camb Philos Soc ; 92(2): 698-715, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-26785932

RESUMEN

The use of phylogenies in ecology is increasingly common and has broadened our understanding of biological diversity. Ecological sub-disciplines, particularly conservation, community ecology and macroecology, all recognize the value of evolutionary relationships but the resulting development of phylogenetic approaches has led to a proliferation of phylogenetic diversity metrics. The use of many metrics across the sub-disciplines hampers potential meta-analyses, syntheses, and generalizations of existing results. Further, there is no guide for selecting the appropriate metric for a given question, and different metrics are frequently used to address similar questions. To improve the choice, application, and interpretation of phylo-diversity metrics, we organize existing metrics by expanding on a unifying framework for phylogenetic information. Generally, questions about phylogenetic relationships within or between assemblages tend to ask three types of question: how much; how different; or how regular? We show that these questions reflect three dimensions of a phylogenetic tree: richness, divergence, and regularity. We classify 70 existing phylo-diversity metrics based on their mathematical form within these three dimensions and identify 'anchor' representatives: for α-diversity metrics these are PD (Faith's phylogenetic diversity), MPD (mean pairwise distance), and VPD (variation of pairwise distances). By analysing mathematical formulae and using simulations, we use this framework to identify metrics that mix dimensions, and we provide a guide to choosing and using the most appropriate metrics. We show that metric choice requires connecting the research question with the correct dimension of the framework and that there are logical approaches to selecting and interpreting metrics. The guide outlined herein will help researchers navigate the current jungle of indices.


Asunto(s)
Conservación de los Recursos Naturales/métodos , Ecología/métodos , Filogenia , Biodiversidad , Evolución Biológica
12.
Proc Natl Acad Sci U S A ; 113(39): 10908-13, 2016 09 27.
Artículo en Inglés | MEDLINE | ID: mdl-27621451

RESUMEN

At global and regional scales, primary productivity strongly correlates with richness patterns of extant animals across space, suggesting that resource availability and climatic conditions drive patterns of diversity. However, the existence and consistency of such diversity-productivity relationships through geological history is unclear. Here we provide a comprehensive quantitative test of the diversity-productivity relationship for terrestrial large mammals through time across broad temporal and spatial scales. We combine >14,000 occurrences for 690 fossil genera through the Neogene (23-1.8 Mya) with regional estimates of primary productivity from fossil plant communities in North America and Europe. We show a significant positive diversity-productivity relationship through the 20-million-year record, providing evidence on unprecedented spatial and temporal scales that this relationship is a general pattern in the ecology and paleo-ecology of our planet. Further, we discover that genus richness today does not match the fossil relationship, suggesting that a combination of human impacts and Pleistocene climate variability has modified the 20-million-year ecological relationship by strongly reducing primary productivity and driving many mammalian species into decline or to extinction.


Asunto(s)
Biodiversidad , Mamíferos/fisiología , Plantas/metabolismo , Animales , Botánica , Simulación por Computador , Europa (Continente) , Fósiles , Geografía , Modelos Teóricos , América del Norte , Paleontología , Factores de Tiempo
13.
Sci Rep ; 5: 12213, 2015 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-26198002

RESUMEN

Islands are ideal for investigating processes that shape species assemblages because they are isolated and have discrete boundaries. Quantifying phylogenetic assemblage structure allows inferences about these processes, in particular dispersal, environmental filtering and in-situ speciation. Here, we link phylogenetic assemblage structure to island characteristics across 393 islands worldwide and 37,041 vascular plant species (representing angiosperms overall, palms and ferns). Physical and bioclimatic factors, especially those impeding colonization and promoting speciation, explained more variation in phylogenetic structure of angiosperms overall (49%) and palms (52%) than of ferns (18%). The relationships showed different or contrasting trends among these major plant groups, consistent with their dispersal- and speciation-related traits and climatic adaptations. Phylogenetic diversity was negatively related to isolation for palms, but unexpectedly it was positively related to isolation for angiosperms overall. This indicates strong dispersal filtering for the predominantly large-seeded, animal-dispersed palm family whereas colonization from biogeographically distinct source pools on remote islands likely drives the phylogenetic structure of angiosperm floras. We show that signatures of dispersal limitation, environmental filtering and in-situ speciation differ markedly among taxonomic groups on islands, which sheds light on the origin of insular plant diversity.


Asunto(s)
Plantas/clasificación , Filogenia
14.
PLoS One ; 10(6): e0130626, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26111037

RESUMEN

Australia has experienced dramatic declines and extinctions of its native rodent species over the last 200 years, particularly in southern Australia. In the tropical savanna of northern Australia significant declines have occurred only in recent decades. The later onset of these declines suggests that the causes may differ from earlier declines in the south. We examine potential regional effects (northern versus southern Australia) on biological and ecological correlates of range decline in Australian rodents. We demonstrate that rodent declines have been greater in the south than in the tropical north, are strongly influenced by phylogeny, and are consistently greater for species inhabiting relatively open or sparsely vegetated habitat. Unlike in marsupials, where some species have much larger body size than rodents, body mass was not an important predictor of decline in rodents. All Australian rodent species are within the prey-size range of cats (throughout the continent) and red foxes (in the south). Contrary to the hypothesis that mammal declines are related directly to ecosystem productivity (annual rainfall), our results are consistent with the hypothesis that disturbances such as fire and grazing, which occur in non-rainforest habitats and remove cover used by rodents for shelter, nesting and foraging, increase predation risk. We agree with calls to introduce conservation management that limits the size and intensity of fires, increases fire patchiness and reduces grazing impacts at ecological scales appropriate for rodents. Controlling feral predators, even creating predator-free reserves in relatively sparsely-vegetated habitats, is urgently required to ensure the survival of rodent species, particularly in northern Australia where declines are not yet as severe as those in the south.


Asunto(s)
Conservación de los Recursos Naturales/métodos , Ecosistema , Cadena Alimentaria , Animales , Australia , Zorros , Marsupiales , Dinámica Poblacional , Conducta Predatoria , Roedores , Australia del Sur
15.
Ecol Lett ; 17(4): 454-63, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24467289

RESUMEN

Modularity is a recurrent and important property of bipartite ecological networks. Although well-resolved ecological networks describe interaction frequencies between species pairs, modularity of bipartite networks has been analysed only on the basis of binary presence-absence data. We employ a new algorithm to detect modularity in weighted bipartite networks in a global analysis of avian seed-dispersal networks. We define roles of species, such as connector values, for weighted and binary networks and associate them with avian species traits and phylogeny. The weighted, but not binary, analysis identified a positive relationship between climatic seasonality and modularity, whereas past climate stability and phylogenetic signal were only weakly related to modularity. Connector values were associated with foraging behaviour and were phylogenetically conserved. The weighted modularity analysis demonstrates the dominating impact of ecological factors on the structure of seed-dispersal networks, but also underscores the relevance of evolutionary history in shaping species roles in ecological communities.


Asunto(s)
Ecosistema , Filogenia , Fenómenos Fisiológicos de las Plantas , Dispersión de Semillas/fisiología , Animales , Conducta Animal/fisiología , Aves/fisiología , Clima
16.
Science ; 341(6144): 343, 2013 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-23888024

RESUMEN

Kreft and Jetz's critique of our recent update of Wallace's zoogeographical regions disregards the extensive sensitivity analyses we undertook, which demonstrate the robustness of our results to the choice of phylogenetic data and clustering algorithm. Their suggested distinction between "transition zones" and biogeographic regions is worthy of further investigation but is thus far unsubstantiated.


Asunto(s)
Clima , Filogenia , Animales
17.
Trends Ecol Evol ; 28(9): 509-16, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23726658

RESUMEN

Current patterns of biological diversity are influenced by both historical and present-day factors, yet research in ecology and evolution is largely split between paleontological and neontological studies. Responding to recent calls for integration, we provide a conceptual framework that capitalizes on data and methods from both disciplines to investigate fundamental processes. We highlight the opportunities arising from a combined approach with four examples: (i) which mechanisms generate spatial and temporal variation in diversity; (ii) how traits evolve; (iii) what determines the temporal dynamics of geographical ranges and ecological niches; and (iv) how species-environment and biotic interactions shape community structure. Our framework provides conceptual guidelines for combining paleontological and neontological perspectives to unravel the fundamental processes shaping life on Earth.


Asunto(s)
Biodiversidad , Evolución Biológica , Ecología/métodos , Ambiente , Geografía , Modelos Biológicos , Paleontología
18.
Science ; 339(6115): 74-8, 2013 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-23258408

RESUMEN

Modern attempts to produce biogeographic maps focus on the distribution of species, and the maps are typically drawn without phylogenetic considerations. Here, we generate a global map of zoogeographic regions by combining data on the distributions and phylogenetic relationships of 21,037 species of amphibians, birds, and mammals. We identify 20 distinct zoogeographic regions, which are grouped into 11 larger realms. We document the lack of support for several regions previously defined based on distributional data and show that spatial turnover in the phylogenetic composition of vertebrate assemblages is higher in the Southern than in the Northern Hemisphere. We further show that the integration of phylogenetic information provides valuable insight on historical relationships among regions, permitting the identification of evolutionarily unique regions of the world.


Asunto(s)
Clima , Filogenia , Anfibios/clasificación , Animales , Aves/clasificación , Mamíferos/clasificación , Filogeografía
19.
Proc Natl Acad Sci U S A ; 109(17): 6620-5, 2012 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-22505736

RESUMEN

Adaptive radiation is the rapid diversification of a single lineage into many species that inhabit a variety of environments or use a variety of resources and differ in traits required to exploit these. Why some lineages undergo adaptive radiation is not well-understood, but filling unoccupied ecological space appears to be a common feature. We construct a complete, dated, species-level phylogeny of the endemic Vangidae of Madagascar. This passerine bird radiation represents a classic, but poorly known, avian adaptive radiation. Our results reveal an initial rapid increase in evolutionary lineages and diversification in morphospace after colonizing Madagascar in the late Oligocene some 25 Mya. A subsequent key innovation involving unique bill morphology was associated with a second increase in diversification rates about 10 Mya. The volume of morphospace occupied by contemporary Madagascan vangas is in many aspects as large (shape variation)--or even larger (size variation)--as that of other better-known avian adaptive radiations, including the much younger Galapagos Darwin's finches and Hawaiian honeycreepers. Morphological space bears a close relationship to diet, substrate use, and foraging movements, and thus our results demonstrate the great extent of the evolutionary diversification of the Madagascan vangas.


Asunto(s)
Adaptación Fisiológica , Evolución Biológica , Aves/fisiología , Ecología , Animales , Aves/clasificación , Aves/genética , Madagascar , Datos de Secuencia Molecular , Filogenia
20.
Evolution ; 66(1): 179-90, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22220873

RESUMEN

Declining diversification rates over time are a well-established evolutionary pattern, often interpreted as indicating initial rapid radiation with filling of ecological niche space. Here, we test the hypothesis that island radiations may show constant net diversification rates over time, due to continued expansion into new niche space in highly dispersive taxa. We investigate diversification patterns of four passerine bird families originating from the Indo-Pacific archipelagos, and link these to biogeographic patterns to provide independent indications of niche filling. We find a declining diversification rate for only one family, the Paradisaeidae (41 species). These are almost completely restricted to New Guinea, and have on average smaller species ranges and higher levels of species richness within grid cells than the other three families. In contrast, we cannot reject constant diversification rates for Campephagidae (93 species), Oriolidae (35 species), and Pachycephalidae (53 species), groups that have independently colonized neighboring archipelagos and continents. We propose that Paradisaeidae have reached the diversity limit imposed by their restricted distribution, whereas high dispersal and colonization success across the geologically dynamic Indo-Pacific archipelagos may have sustained high speciation rates for the other three families. Alternatively, increasing extinction rates may have obscured declining speciation rates in those three phylogenies.


Asunto(s)
Especiación Genética , Passeriformes , Animales , Filogeografía , Dinámica Poblacional
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...