Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nanoscale ; 16(5): 2654-2661, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38230573

RESUMEN

The π-conjugation of organic molecules can be strongly influenced when functional groups are added to a molecule, for example when pentacene is converted into pentacene-5,7,12,14-tetrone (P4O) by substitution of four H-atoms with four O-atoms, leading to four CO double bonds. In fact, although free P4O resembles the parent hydrocarbon pentacene structurally at a first glance, its electronic properties differ drastically and can be more accurately described by three benzene units connected via four carbonyl groups. If P4O is deposited onto Cu(111), the electronic interaction across the interface has previously been reported to fully restore the π-conjugation through a weakening of the CO double bonds and a redistribution of electrons, both of which have been explained with the model of surface-induced aromatic stabilization. Here, we observe for the case of P4O on Cu(111) that the molecule does not exhibit full π-conjugation upon interaction with the surface, likely because of the special electronic nature of the hybridized P4O on Cu(111). Our results are derived from CO-functionalized noncontact atomic force microscopy measurements in combination with dispersion-corrected density functional theory calculations yielding bond lengths and molecular geometries. To characterize the aromaticity, we apply the harmonic oscillator model of aromaticity.

2.
Nanoscale Adv ; 6(1): 92-101, 2023 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-38125607

RESUMEN

The exceptional electronic and photonic properties of the monolayers of transition metal dichalcogenides including the spin-orbit splitting of the valence and conduction bands at the K points of the Brillouin zone make them promising for novel applications in electronics, photonics and optoelectronics. Scalable growth of these materials and understanding of their interaction with the substrate is crucial for these applications. Here we report the growth of MoS2 and MoSe2 monolayers on Au(111) by chemical vapor deposition at ambient pressure as well as the analysis of their structural and electronic properties down to the atomic scale. To this aim, we apply ultrahigh vacuum surface sensitive techniques including scanning tunneling microscopy and spectroscopy, low-energy electron diffraction, X-ray and angle-resolved ultraviolet photoelectron spectroscopy in combination with Raman spectroscopy at ambient conditions. We demonstrate the growth of high-quality epitaxial single crystalline MoS2 and MoSe2 monolayers on Au(111) and show the impact of annealing on the monolayer/substrate interaction. Thus, as-grown and moderately annealed (<100 °C) MoSe2 monolayers are decoupled from the substrate by excess Se atoms, whereas annealing at higher temperatures (>250 °C) results in their strong coupling with the substrate caused by desorption of the excess Se. The MoS2 monolayers are strongly coupled to the substrate and the interaction remains almost unchanged even after annealing up to 450 °C.

3.
Dalton Trans ; 52(34): 11875-11885, 2023 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-37560800

RESUMEN

The multistep synthesis of a hybrid material based on a TiO2 core with an immobilized triazine-based copper(II)-NNN pincer complex is reported. The formation of the material was confirmed by FT-IR spectroscopy and elemental and thermogravimetric analyses, and the loading by copper ions was quantified by ICP/OES analysis. The properties of the hybrid material were further investigated by X-ray photoelectron spectroscopy (XPS), contiuous wave electron spin resonance (CW-ESR), UV-vis spectroscopy, and argon sorption. Efficient and regioselective synthesis of 1,4-disubstituted 1,2,3-triazoles was achieved by employing the hybrid material as a catalyst in a mixture of H2O/EtOH as a green solvent with excellent catalytic activity with a TOF up to 495 h-1 at 50 °C. The reusability of the prepared hybrid material in the catalytic reaction was possible over five consecutive runs without significant loss of catalytic activity. The described method represents an effective way to ensure sustainable use of pincer complexes in catalytic systems by immobilizing them on solid supports, resulting in a hybrid organic-inorganic catalyst platform.

4.
J Phys Chem A ; 127(15): 3265-3273, 2023 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-37037005

RESUMEN

Time-dependent density functional theory is the method of choice to efficiently calculate excitation spectra with the functional and basis set choice allowing one to compromise between accuracy and computational cost. In this work, the performance of different functionals as well as the second-order approximate coupled cluster singles and doubles model CC2 is evaluated by comparing the results to experimental results of the example molecule tetraphenyldibenzoperiflanthene (DBP). The choice of the functional has a significant impact on the calculated spectrum of DBP. The performance of a number of different functionals was evaluated, quantified, and, where possible, discussed. The best functional, tuned-CAM-B3LYP, is used to investigate DBP on a surface of hexagonal boron nitride (h-BN). The resulting spectrum shows excellent agreement with experimental results for a monolayer of DBP on h-BN.

5.
ACS Appl Mater Interfaces ; 15(18): 22626-22636, 2023 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-37097287

RESUMEN

Heterostructures increasingly attracted attention over the past several years to enable various optoelectronic and photonic applications. In this work, atomically thin interfaces of Ir/Al2O3 heterostructures compatible with micro-optoelectronic technologies are reported. Their structural and optical properties were determined by spectroscopic and microscopic techniques (XRR, XPS, HRTEM, spectroscopic ellipsometry, and UV/vis/NIR spectrophotometry). The XRR and HRTEM analyses reveal a layer-by-layer growth mechanism of Ir in atomic scale heterostructures, which is different from the typical island-type growth of metals on dielectrics. Alongside, XPS investigations imply the formation of Ir-O-Al bonding at the interfaces for lower Ir concentrations, in contrast to the nanoparticle core-shell structure formation. Precisely tuning the ratio of the constituents ensures the control of the dispersion profile along with a transition from effective dielectric to metallic heterostructures. The Ir coating thickness was varied ranging from a few angstroms to films of about 7 nm in the heterostructures. The transition has been observed in the structures containing individual Ir coating thicknesses of about 2-4 nm. Following this, we show epsilon-near-zero metamaterials with tunable dielectric constants by precisely varying the composition of such heterostructures. Overall, a comprehensive study on structural and optical properties of the metal-dielectric interfaces of Ir/Al2O3 heterostructures was addressed, indicating an extension of the material portfolio available for novel optical functionalities.

6.
Acta Crystallogr A Found Adv ; 78(Pt 3): 262-271, 2022 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-35502717

RESUMEN

The epitaxial growth of molecular crystals at single-crystalline surfaces is often strongly related to the first monolayer at the substrate surface. The present work presents a theoretical approach to compare three-dimensional lattices of epitaxially grown crystals with two-dimensional lattices of the molecules formed within the first monolayer. Real-space and reciprocal-space representations are considered. Depending on the crystallographic orientation relative to the substrate surface, proper linear combinations of the lattice vectors of the three-dimensional unit cell result in a rhomboid in the xy plane, representing a two-dimensional projection. Mathematical expressions are derived which provide a relationship between the six lattice parameters of the three-dimensional case and the three parameters obtained for the two-dimensional surface unit cell. It is found that rotational symmetries of the monolayers are reflected by the epitaxial order. Positive and negative orientations of the crystallographic contact planes are correlated with the mirror symmetry of the surface unit cells, and the corresponding mathematical expressions are derived. The method is exemplarily applied to data obtained in previous grazing-incidence X-ray diffraction (GIXD) measurements with sample rotation on thin films of the conjugated molecules 3,4;9,10-perylenetetracarboxylic dianhydride (PTCDA), 6,13-pentacenequinone (P2O), 1,2;8,9-dibenzopentacene (trans-DBPen) and dicyanovinyl-quaterthiophene (DCV4T-Et2) grown by physical vapor deposition on Ag(111) and Cu(111) single crystals. This work introduces the possibility to study three-dimensional crystal growth nucleated by an ordered monolayer by combining two different experimental techniques, GIXD and low-energy electron diffraction, which has been implemented in the second part of this work.

7.
Acta Crystallogr A Found Adv ; 78(Pt 3): 272-282, 2022 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-35502718

RESUMEN

While the crystal structure of the polymorph phase can be studied in three dimensions conveniently by X-ray methods like grazing-incidence X-ray diffraction (GIXD), the first monolayer is only accessible by surface-sensitive methods that allow the determination of a two-dimensional lattice. Here, GIXD measurements with sample rotation are compared with distortion-corrected low-energy electron diffraction (LEED) experiments on conjugated molecules: 3,4;9,10-perylenetetracarboxylic dianhydride (PTCDA), 6,13-pentacenequinone (P2O), 1,2;8,9-dibenzopentacene (trans-DBPen) and dicyanovinyl-quaterthiophene (DCV4T-Et2) grown by physical vapor deposition on Ag(111) and Cu(111) single crystals. For these molecular crystals, which exhibit different crystallographic lattices and crystal orientations as well as epitaxial properties, the geometric parameters of the three-dimensional lattice are compared with the corresponding geometry of the first monolayer. A comparison of the monolayer lattice from LEED investigations with the multilayer lattices determined by rotated GIXD experiments reveals a correlation between the first monolayer and the epitaxial growth of three-dimensional crystals together with lattice distortions and re-alignment of molecules. The selected examples show three possible scenarios of crystal growth on top of an ordered monolayer: (i) growth of a single polymorph, (ii) growth of three different polymorphs; in both cases the first monolayer serves as template. In the third case (iii) strong lattice distortion and distinct molecular re-alignments from the monolayer to epitaxially grown crystals are observed. This is the second part of our work concerning the correlation between two- and three-dimensional crystallographic lattices for epitaxial analysis. In the first part, the theoretical basis has been derived which provides a mathematical relationship between the six lattice parameters of the three-dimensional case and the three parameters obtained for the two-dimensional surface unit cell, together with their orientation to the single-crystalline substrate. In this work, a combined experimental approach of GIXD and LEED is introduced which can be used to investigate the effect of the epitaxial monolayer on the structural properties of molecular crystals grown on top.

8.
ACS Appl Mater Interfaces ; 14(12): 14677-14692, 2022 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-35311275

RESUMEN

Tuning ion energies in plasma-enhanced atomic layer deposition (PEALD) processes enables fine control over the material properties of functional coatings. The growth, structural, mechanical, and optical properties of HfO2 thin films are presented in detail toward photonic applications. The influence of the film thickness and bias value on the properties of HfO2 thin films deposited at 100 °C using tetrakis(dimethylamino)hafnium (TDMAH) and oxygen plasma using substrate biasing is systematically analyzed. The HfO2 films deposited without a substrate bias show an amorphous microstructure with a low density, low refractive index, high incorporation of residual hydroxyl (OH) content, and high residual tensile stress. The material properties of HfO2 films significantly improved at a low bias voltage due to the interaction with oxygen ions accelerated to the film. Such HfO2 films have a higher density, higher refractive index, and lower residual OH incorporation than films without bias. The mechanical stress becomes compressive depending on the bias values. Further increasing the ion energies by applying a larger substrate bias results in a decrease of the film density, refractive index, and a higher residual OH incorporation as well as crystalline inclusions. The comparable material properties of the HfO2 films have been reported using tris(dimethylamino)cyclopentadienyl hafnium (TDMACpH) in a different apparatus, indicating that this approach can be transferred to various systems and is highly versatile. Finally, the substrate biasing technique has been introduced to deposit stress-compensated, crack- and delamination-free high-reflective (HR) mirrors at 355 and 532 nm wavelengths using HfO2 and SiO2 as high and low refractive index materials, respectively. Such mirrors could not be obtained without the substrate biasing during the deposition because of the high tensile stress of HfO2, leading to cracks in thick multilayer systems. An HR mirror for 532 nm wavelength shows a high reflectance of 99.93%, a residual transmittance of ∼530 ppm, and a low absorption of ∼11 ppm, as well as low scattering losses of ∼4 ppm, high laser-induced damage threshold, low mechanical stress, and high environmental stability.

9.
Nat Mater ; 21(7): 740-747, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35058609

RESUMEN

The growth of inch-scale high-quality graphene on insulating substrates is desirable for electronic and optoelectronic applications, but remains challenging due to the lack of metal catalysis. Here we demonstrate the wafer-scale synthesis of adlayer-free ultra-flat single-crystal monolayer graphene on sapphire substrates. We converted polycrystalline Cu foil placed on Al2O3(0001) into single-crystal Cu(111) film via annealing, and then achieved epitaxial growth of graphene at the interface between Cu(111) and Al2O3(0001) by multi-cycle plasma etching-assisted-chemical vapour deposition. Immersion in liquid nitrogen followed by rapid heating causes the Cu(111) film to bulge and peel off easily, while the graphene film remains on the sapphire substrate without degradation. Field-effect transistors fabricated on as-grown graphene exhibited good electronic transport properties with high carrier mobilities. This work breaks a bottleneck of synthesizing wafer-scale single-crystal monolayer graphene on insulating substrates and could contribute to next-generation graphene-based nanodevices.

10.
ACS Nano ; 15(4): 6723-6734, 2021 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-33728893

RESUMEN

The fabrication of nanomaterials involves self-ordering processes of functional molecules on inorganic surfaces. To obtain specific molecular arrangements, a common strategy is to equip molecules with functional groups. However, focusing on the functional groups alone does not provide a comprehensive picture. Especially at interfaces, processes that govern self-ordering are complex and involve various physical and chemical effects, often leading to unexpected structures, as we showcase here on the example of a homologous series of quinones on Ag(111). Naively, one could expect that such quinones, which all bear the same functionalization, form similar motifs. In salient contrast, our joint theoretical and experimental study shows that profoundly different structures are formed. Using a machine-learning-based structure search algorithm, we find that this is due to a shift of the balance of three antagonizing driving forces: adsorbate-substrate interactions governing adsorption sites, adsorbate-adsorbate interactions favoring close packing, and steric hindrance inhibiting certain otherwise energetically beneficial molecular arrangements. The theoretical structures show excellent agreement with our experimental characterizations of the organic/inorganic interfaces, both for the unit cell sizes and the orientations of the molecules within. The nonintuitive interplay of similarly important interaction mechanisms will continue to be a challenging aspect for the design of functional interfaces. With a detailed examination of all driving forces, we are, however, still able to devise a design principle for self-assembly of functionalized molecules.

11.
Spectrochim Acta A Mol Biomol Spectrosc ; 252: 119508, 2021 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-33571739

RESUMEN

Atomically thin heterostructures and superlattices are promising candidates for various optoelectronic and photonic applications. Different combinations of Al2O3/TiO2 composites are obtained by plasma enhanced atomic layer deposition (PEALD). Their growth, composition, dispersion relation, and optical bandgap are systematically studied by means of UV/VIS spectrophotometry, spectroscopic ellipsometry (SE), x-ray reflectometry (XRR), scanning transmission electron microscopy(STEM) and x-ray photoelectron spectroscopy (XPS). Besides, an effective medium approximation (EMA) approach is applied to model the heterostructures theoretically. The refractive index and the indirect bandgap of the heterostructures depend on the ratio of the two oxides, while the bandgap is very sensitive to the thicknesses of the barrier and quantum well layers. A large blue shift of the absorption edge from 400 nm to 320 nm is obtained by changing the TiO2 (quantum well) thickness from ~2 nm to ~0.1 nm separated by ~2 nm of Al2O3 (barrier) layers. PEALD unfolds the possibility of achieving optical quantizing effects within complex heterostructures enabling control of their structures down to atomic scale. It enables a path towards atomic scale processing of new 'artificial' materials with desired refractive indices and bandgap combinations by precise control of their compositions.

12.
J Phys Chem C Nanomater Interfaces ; 125(1): 618-626, 2021 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-33488907

RESUMEN

The formation of unknown polymorphs due to the crystallization at a substrate surface is frequently observed. This phenomenon is much less studied for epitaxially grown molecular crystals since the unambiguous proof of a new polymorph is a challenging task. The existence of multiple epitaxial alignments of the crystallites together with the simultaneous presence of different polymorphs does not allow simple phase identification. We present grazing incidence X-ray diffraction studies on conjugated molecules like perylenetetracarboxylic dianhydride (PTCDA), pentacene, dibenzopentacene (trans-DBPen), and dicyanovinylquater-thiophene (DCV4T-Et2) grown by physical vapor deposition on single crystalline surfaces like Ag(111), Cu(111), and graphene. A new method for indexing the observed Bragg peaks allows the determination of the crystallographic unit cells so that the type of crystallographic phase can be clearly identified. This approach even works when several polymorphs are simultaneously present within a single sample as shown for DCV4T-Et2 on Ag(111). Additionally, epitaxial relationships between the epitaxially grown crystallites and the single crystalline surfaces are determined. In a subsequent step, the experimental data are used for the crystal structure solution of an unknown polymorph, as shown for the example trans-DBPen grown on Cu(111).

13.
Beilstein J Nanotechnol ; 11: 1168-1177, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32821641

RESUMEN

2D materials such as hexagonal boron nitride (h-BN) are widely used to decouple organic molecules from metal substrates. Nevertheless, there are also indications in the literature for a significant hybridization, which results in a perturbation of the intrinsic molecular properties. In this work we study the electronic and optical properties as well as the lateral structure of tetraphenyldibenzoperiflanthene (DBP) on Ni(111) with and without an atomically thin h-BN interlayer to investigate its possible decoupling effect. To this end, we use in situ differential reflectance spectroscopy as an established method to distinguish between hybridized and decoupled molecules. By inserting an h-BN interlayer we fabricate a buried interface and show that the DBP molecules are well decoupled from the Ni(111) surface. Furthermore, a highly ordered DBP monolayer is obtained on h-BN/Ni(111) by depositing the molecules at a substrate temperature of 170 °C. The structural results are obtained by quantitative low-energy electron diffraction and low-temperature scanning tunneling microscopy. Finally, the investigation of the valence band structure by ultraviolet photoelectron spectroscopy shows that the low work function of h-BN/Ni(111) further decreases after the DBP deposition. For this reason, the h-BN-passivated Ni(111) surface may serve as potential n-type contact for future molecular electronic devices.

14.
Acta Crystallogr A Found Adv ; 76(Pt 3): 345-357, 2020 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-32356785

RESUMEN

Crystal structure identification of thin organic films entails a number of technical and methodological challenges. In particular, if molecular crystals are epitaxially grown on single-crystalline substrates a complex scenario of multiple preferred orientations of the adsorbate, several symmetry-related in-plane alignments and the occurrence of unknown polymorphs is frequently observed. In theory, the parameters of the reduced unit cell and its orientation can simply be obtained from the matrix of three linearly independent reciprocal-space vectors. However, if the sample exhibits unit cells in various orientations and/or with different lattice parameters, it is necessary to assign all experimentally obtained reflections to their associated individual origin. In the present work, an effective algorithm is described to accomplish this task in order to determine the unit-cell parameters of complex systems comprising different orientations and polymorphs. This method is applied to a polycrystalline thin film of the conjugated organic material 6,13-pentacenequinone (PQ) epitaxially grown on an Ag(111) surface. All reciprocal vectors can be allocated to unit cells of the same lattice constants but grown in various orientations [sixfold rotational symmetry for the contact planes (102) and (102)]. The as-determined unit cell is identical to that reported in a previous study determined for a fibre-textured PQ film. Preliminary results further indicate that the algorithm is especially effective in analysing epitaxially grown crystallites not only for various orientations, but also if different polymorphs are present in the film.

15.
Nanoscale ; 12(3): 2089-2102, 2020 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-31912855

RESUMEN

The growth, chemical, structural, mechanical, and optical properties of oxide thin films deposited by plasma enhanced atomic layer deposition (PEALD) are strongly influenced by the average-bias voltage applied during the reaction step of surface functional groups with oxygen plasma species. Here, this effect is investigated thoroughly for SiO2 deposited in two different PEALD tools at average-bias voltages up to -300 V. Already at a very low average-bias voltage (< -10 V), the SiO2 films have significantly lower water content than films grown without biasing together with the formation of denser films having a higher refractive index and nearly stoichiometric composition. Substrate biasing during PEALD also enables control of mechanical stress. The experimental findings are supported by density functional theory and atomistic simulations. They demonstrate that the application of an electric field during the plasma step results in an increased energy transfer between energetic ions and the surface, directly influencing relevant surface reactions. Applying an electric field during the PEALD process leads to SiO2 thin films with significantly improved properties comparable to films grown by ion beam sputtering.

16.
Phys Chem Chem Phys ; 21(24): 12730-12747, 2019 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-31165796

RESUMEN

Interpreting experimental spectra of thin films of organic semiconductors is challenging, and understanding the relationship between experimental data obtained by different spectroscopic techniques requires a careful consideration of the initial and final states for each process. The discussion of spectroscopic data is frequently mired in confusion that originates in overlapping terminology with however distinct meaning in different spectroscopies. Here, we present a coherent framework that is capable of treating on equal footing most spectroscopies commonly used to investigate thin films of organic semiconductors. We develop a simple model for the expected energy level positions, as obtained by common spectroscopic techniques, and relate them to the energies of molecular states. Molecular charging energies in photoionization processes, as well as adsorption energies and the screening of molecular charges due to environmental polarization, are taken into account as the main causes for shifts of the measured spectroscopic features. We explain the relationship between these quantities, as well as with the transport gap, the optical gap and the exciton binding energy. Our considerations serve as a model for weakly interacting systems, e.g., various organic molecular crystals, where wave function hybridizations between adjacent molecules are negligible.

17.
J Appl Crystallogr ; 52(Pt 3): 683-689, 2019 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-31236098

RESUMEN

GIDVis is a software package based on MATLAB specialized for, but not limited to, the visualization and analysis of grazing-incidence thin-film X-ray diffraction data obtained during sample rotation around the surface normal. GIDVis allows the user to perform detector calibration, data stitching, intensity corrections, standard data evaluation (e.g. cuts and integrations along specific reciprocal-space directions), crystal phase analysis etc. To take full advantage of the measured data in the case of sample rotation, pole figures can easily be calculated from the experimental data for any value of the scattering angle covered. As an example, GIDVis is applied to phase analysis and the evaluation of the epitaxial alignment of pentacene-quinone crystallites on a single-crystalline Au(111) surface.

18.
J Phys Condens Matter ; 31(13): 134004, 2019 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-30729922

RESUMEN

In this contribution, we compare the optical absorbance behaviour and the structural properties of lead(II)-phthalocyanine (PbPc) and tin(II)-phthalocyanine (SnPc) thin films. To this end, we employ a Ag(1 1 1) substrate terminated with a monolayer of 3,4,9,10-perylene tetracarboxylic dianhydride constituting an internal interface whose main effect is an electronic decoupling of the phthalocyanine adlayer from the metal surface. As deduced from low-energy electron diffraction and scanning tunnelling microscopy (STM) measurements, the epitaxial relations and unit cell compositions of the prevailing PbPc monolayer and multilayer domains are confusingly similar to those of SnPc on PTCDA/Ag(1 1 1). However, SnPc and PbPc can be readily distinguished by their STM-induced switching behaviours: while the former is capable of reversible configurational changes, no effect on the latter could be achieved by us under comparable conditions. This corroborates earlier theoretical predictions and even renders the chemical identification of individual shuttlecock-shaped metal-phthalocyanines feasible.

19.
ACS Nano ; 11(10): 10495-10508, 2017 10 24.
Artículo en Inglés | MEDLINE | ID: mdl-28902494

RESUMEN

The current study generates profound atomistic insights into doping-induced changes of the optical and electronic properties of the prototypical PTCDA/Ag(111) interface. For doping K atoms are used, as KxPTCDA/Ag(111) has the distinct advantage of forming well-defined stoichiometric phases. To arrive at a conclusive, unambiguous, and fully atomistic understanding of the interface properties, we combine state-of-the-art density-functional theory calculations with optical differential reflectance data, photoelectron spectra, and X-ray standing wave measurements. In combination with the full structural characterization of the KxPTCDA/Ag(111) interface by low-energy electron diffraction and scanning tunneling microscopy experiments (ACS Nano 2016, 10, 2365-2374), the present comprehensive study provides access to a fully characterized reference system for a well-defined metal-organic interface in the presence of dopant atoms, which can serve as an ideal benchmark for future research and applications. The combination of the employed complementary techniques allows us to understand the peculiarities of the optical spectra of K2PTCDA/Ag(111) and their counterintuitive similarity to those of neutral PTCDA layers. They also clearly describe the transition from a metallic character of the (pristine) adsorbed PTCDA layer on Ag(111) to a semiconducting state upon doping, which is the opposite of the effect (degenerate) doping usually has on semiconducting materials. All experimental and theoretical efforts also unanimously reveal a reduced electronic coupling between the adsorbate and the substrate, which goes hand in hand with an increasing adsorption distance of the PTCDA molecules caused by a bending of their carboxylic oxygens away from the substrate and toward the potassium atoms.

20.
Chem Commun (Camb) ; 53(60): 8474-8477, 2017 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-28703255

RESUMEN

A series of tetrapyrene-fused benzocoronenes was synthesized by a "bottom-up" approach, which offers a facile access to extended polycyclic aromatic hydrocarbons with concave π-surfaces, cove regions and zig-zag edges.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...