Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Biochem Soc Trans ; 51(3): 983-993, 2023 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-37222258

RESUMEN

Patterns of gene expression, cell growth and cell-type specification during development are often regulated by morphogens. Morphogens are signalling molecules produced by groups of source cells located tens to hundreds of micrometers distant from the responding tissue and are thought to regulate the fate of receiving cells in a direct, concentration-dependent manner. The mechanisms that underlie scalable yet robust morphogen spread to form the activity gradient, however, are not well understood and are currently intensely debated. Here, based on two recent publications, we review two in vivo derived concepts of regulated gradient formation of the morphogen Hedgehog (Hh). In the first concept, Hh disperses on the apical side of developing epithelial surfaces using the same mechanistic adaptations of molecular transport that DNA-binding proteins in the nucleus use. In the second concept, Hh is actively conveyed to target cells via long filopodial extensions, called cytonemes. Both concepts require the expression of a family of sugar-modified proteins in the gradient field called heparan sulphate proteoglycans as a prerequisite for Hh dispersal, yet propose different - direct versus indirect - roles of these essential extracellular modulators.


Asunto(s)
Proteínas de Drosophila , Animales , Proteínas de Drosophila/metabolismo , Glicosaminoglicanos/metabolismo , Proteínas Hedgehog/metabolismo , Morfogénesis/fisiología , Transducción de Señal/fisiología , Drosophila melanogaster/metabolismo
2.
Front Mol Biosci ; 10: 1130064, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36911531

RESUMEN

Morphogens determine cellular differentiation in many developing tissues in a concentration dependent manner. As a central model for gradient formation during animal development, Hedgehog (Hh) morphogens spread away from their source to direct growth and pattern formation in the Drosophila wing disc. Although heparan sulfate (HS) expression in the disc is essential for this process, it is not known whether HS regulates Hh signaling and spread in a direct or in an indirect manner. To answer this question, we systematically screened two composite Hh binding areas for HS in vitro and expressed mutated proteins in the Drosophila wing disc. We found that selectively impaired HS binding of the second site reduced Hh signaling close to the source and caused striking wing mispatterning phenotypes more distant from the source. These observations suggest that HS constrains Hh to the wing disc epithelium in a direct manner, and that interfering with this constriction converts Hh into freely diffusing forms with altered signaling ranges and impaired gradient robustness.

3.
Nat Commun ; 14(1): 758, 2023 02 10.
Artículo en Inglés | MEDLINE | ID: mdl-36765094

RESUMEN

Cellular differentiation is directly determined by concentration gradients of morphogens. As a central model for gradient formation during development, Hedgehog (Hh) morphogens spread away from their source to direct growth and pattern formation in Drosophila wing and eye discs. What is not known is how extracellular Hh spread is achieved and how it translates into precise gradients. Here we show that two separate binding areas located on opposite sides of the Hh molecule can interact directly and simultaneously with two heparan sulfate (HS) chains to temporarily cross-link the chains. Mutated Hh lacking one fully functional binding site still binds HS but shows reduced HS cross-linking. This, in turn, impairs Hhs ability to switch between both chains in vitro and results in striking Hh gradient hypomorphs in vivo. The speed and propensity of direct Hh switching between HS therefore shapes the Hh gradient, revealing a scalable design principle in morphogen-patterned tissues.


Asunto(s)
Proteínas de Drosophila , Animales , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Heparitina Sulfato/metabolismo , Drosophila/metabolismo , Sitios de Unión , Drosophila melanogaster/metabolismo , Alas de Animales
4.
J Cell Sci ; 135(5)2022 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-34308968

RESUMEN

The Sonic hedgehog (Shh) pathway controls embryonic development and tissue homeostasis after birth. Long-standing questions about this pathway include how the dual-lipidated, firmly plasma membrane-associated Shh ligand is released from producing cells to signal to distant target cells and how the resistance-nodulation-division transporter Dispatched 1 (Disp, also known as Disp1) regulates this process. Here, we show that inactivation of Disp in Shh-expressing human cells impairs proteolytic Shh release from its lipidated terminal peptides, a process called ectodomain shedding. We also show that cholesterol export from Disp-deficient cells is reduced, that these cells contain increased cholesterol amounts in the plasma membrane, and that Shh shedding from Disp-deficient cells is restored by pharmacological membrane cholesterol extraction and by overexpression of transgenic Disp or the structurally related protein Patched 1 (Ptc, also known as Ptch1; a putative cholesterol transporter). These data suggest that Disp can regulate Shh function via controlled cell surface shedding and that membrane cholesterol-related molecular mechanisms shared by Disp and Ptc exercise such sheddase control.


Asunto(s)
Membrana Celular , Colesterol , Proteínas Hedgehog , Proteínas de Transporte de Membrana/genética , Células Cultivadas , Proteínas Hedgehog/genética , Humanos , Ligandos , Transducción de Señal
5.
Bioessays ; 43(11): e2100133, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34611914

RESUMEN

Two posttranslational lipid modifications present on all Hedgehog (Hh) morphogens-an N-terminal palmitate and a C-terminal cholesterol-are established and essential regulators of Hh biofunction. Yet, for several decades, the question of exactly how both lipids contribute to Hh signaling remained obscure. Recently, cryogenic electron microscopy revealed different modes by which one or both lipids may contribute directly to Hh binding and signaling to its receptor Patched1 (Ptc). Some of these modes demand that the established release factor Dispatched1 (Disp) extracts dual-lipidated Hh from the cell surface, and that another known upstream signaling modulator called Scube2 chaperones the dual-lipidated morphogen to Ptc. By mechanistically and biochemically aligning this concept with established in vivo and recent in vitro findings, this reflection identifies remaining questions in lipidated Hh transport and evaluates additional mechanisms of Disp- and Scube2-regulated release of a second bioactive Hh fraction that has one or both lipids removed.


Asunto(s)
Proteínas de Drosophila , Proteínas Hedgehog , Colesterol , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Procesamiento Proteico-Postraduccional , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...