Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
G3 (Bethesda) ; 14(5)2024 05 07.
Artículo en Inglés | MEDLINE | ID: mdl-38409337

RESUMEN

Robust genetic systems to control the expression of transgenes in a spatial and temporal manner are a valuable asset for researchers. The GeneSwitch system induced by the drug RU486 has gained widespread use in the Drosophila community. However, some concerns were raised as negative effects were seen depending on the stock, transgene, stage, and tissue under study. Here, we characterized the adverse effects triggered by activating the GeneSwitch system in adult muscles using the MHC-GS-GAL4 driver. When a control, mock UAS-RNAi transgene was induced by feeding adult flies with RU486, we found that the overall muscle structure, including myofibrils and mitochondrial shape, was significantly disrupted and led to a significant reduction in the lifespan. Remarkably, lifespan was even shorter when 2 copies of the driver were used even without the mock UAS-RNAi transgene. Thus, researchers should be cautious when interpreting the results given the adverse effects we found when inducing RU486-dependent MHC-GS-GAL4 in adult muscles. To account for the impact of these effects we recommend adjusting the dose of RU486, setting up additional control groups, such as a mock UAS-RNAi transgene, as comparing the phenotypes between RU486-treated and untreated animals could be insufficient.


Asunto(s)
Mifepristona , Transgenes , Animales , Mifepristona/farmacología , Músculos/metabolismo , Músculos/efectos de los fármacos , Proteínas de Drosophila/genética , Animales Modificados Genéticamente , Interferencia de ARN , Drosophila/genética , Drosophila/efectos de los fármacos , Drosophila melanogaster/genética , Drosophila melanogaster/efectos de los fármacos , Fenotipo , Longevidad/efectos de los fármacos , Longevidad/genética
2.
Dev Cell ; 58(21): 2261-2274.e6, 2023 11 06.
Artículo en Inglés | MEDLINE | ID: mdl-37848027

RESUMEN

The retinoblastoma (RB) and Hippo pathways interact to regulate cell proliferation and differentiation. However, the mechanism of interaction is not fully understood. Drosophila photoreceptors with inactivated RB and Hippo pathways specify normally but fail to maintain their neuronal identity and dedifferentiate. We performed single-cell RNA sequencing to elucidate the cause of dedifferentiation and to determine the fate of these cells. We find that dedifferentiated cells adopt a progenitor-like fate due to inappropriate activation of the retinal differentiation suppressor homothorax (hth) by Yki/Sd. This results in the activation of a distinct Yki/Hth transcriptional program, driving photoreceptor dedifferentiation. We show that Rbf physically interacts with Yki and, together with the GAGA factor, inhibits the hth expression. Thus, RB and Hippo pathways cooperate to maintain photoreceptor differentiation by preventing inappropriate expression of hth in differentiating photoreceptors. Our work highlights the importance of both RB and Hippo pathway activities for maintaining the state of terminal differentiation.


Asunto(s)
Proteínas de Drosophila , Neoplasias de la Retina , Retinoblastoma , Animales , Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Proteínas Nucleares/metabolismo , Proteína de Retinoblastoma/metabolismo , Transducción de Señal/genética , Células Madre/metabolismo , Transactivadores/metabolismo , Factores de Transcripción/metabolismo
3.
Front Immunol ; 14: 1266359, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37799716

RESUMEN

Introduction: Inflammatory epidermolysis bullosa acquisita (EBA) is characterized by a neutrophilic response to anti-type VII collagen (COL7) antibodies resulting in the development of skin inflammation and blistering. The antibody transfer model of EBA closely mirrors this EBA phenotype. Methods: To better understand the changes induced in neutrophils upon recruitment from peripheral blood into lesional skin in EBA, we performed single-cell RNA-sequencing of whole blood and skin dissociate to capture minimally perturbed neutrophils and characterize their transcriptome. Results: Through this approach, we identified clear distinctions between circulating activated neutrophils and intradermal neutrophils. Most strikingly, the gene expression of multiple C-type lectin receptors, which have previously been reported to orchestrate host defense against fungi and select bacteria, were markedly dysregulated. After confirming the upregulation of Clec4n, Clec4d, and Clec4e in experimental EBA as well as in lesional skin from patients with inflammatory EBA, we performed functional studies in globally deficient Clec4e-/- and Clec4d-/- mice as well as in neutrophil-specific Clec4n-/- mice. Deficiency in these genes did not reduce disease in the EBA model. Discussion: Collectively, our results suggest that while the upregulation of Clec4n, Clec4d, and Clec4e is a hallmark of activated dermal neutrophil populations, their individual contribution to the pathogenesis of EBA is dispensable.


Asunto(s)
Epidermólisis Ampollosa Adquirida , Humanos , Animales , Ratones , Neutrófilos , Autoanticuerpos , Piel , Vesícula
4.
bioRxiv ; 2023 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-37163078

RESUMEN

The RB and Hippo pathways interact to regulate cell proliferation and differentiation. However, their mechanism of interaction is not fully understood. Drosophila photoreceptors with inactivated RB and Hippo pathways specify normally but fail to maintain neuronal identity and dedifferentiate. We performed single-cell RNA-sequencing to elucidate the cause of dedifferentiation and the fate of these cells. We find that dedifferentiated cells adopt a progenitor-like fate due to inappropriate activation of the retinal differentiation suppressor homothorax (hth) by Yki/Sd. This results in activation of the Yki/Hth transcriptional program, driving photoreceptor dedifferentiation. We show that Rbf physically interacts with Yki which, together with the GAGA factor, inhibits hth expression. Thus, RB and Hippo pathways cooperate to maintain photoreceptor differentiation by preventing inappropriate expression of hth in differentiating photoreceptors. Our work accentuates the importance of both RB and Hippo pathway activity for maintaining the state of terminal differentiation.

5.
Proc Natl Acad Sci U S A ; 120(15): e2220770120, 2023 04 11.
Artículo en Inglés | MEDLINE | ID: mdl-37011211

RESUMEN

The canonical role of the transcription factor E2F is to control the expression of cell cycle genes by binding to the E2F sites in their promoters. However, the list of putative E2F target genes is extensive and includes many metabolic genes, yet the significance of E2F in controlling the expression of these genes remains largely unknown. Here, we used the CRISPR/Cas9 technology to introduce point mutations in the E2F sites upstream of five endogenous metabolic genes in Drosophila melanogaster. We found that the impact of these mutations on both the recruitment of E2F and the expression of the target genes varied, with the glycolytic gene, Phosphoglycerate kinase (Pgk), being mostly affected. The loss of E2F regulation on the Pgk gene led to a decrease in glycolytic flux, tricarboxylic acid cycle intermediates levels, adenosine triphosphate (ATP) content, and an abnormal mitochondrial morphology. Remarkably, chromatin accessibility was significantly reduced at multiple genomic regions in PgkΔE2F mutants. These regions contained hundreds of genes, including metabolic genes that were downregulated in PgkΔE2F mutants. Moreover, PgkΔE2F animals had shortened life span and exhibited defects in high-energy consuming organs, such as ovaries and muscles. Collectively, our results illustrate how the pleiotropic effects on metabolism, gene expression, and development in the PgkΔE2F animals underscore the importance of E2F regulation on a single E2F target, Pgk.


Asunto(s)
Proteínas de Drosophila , Drosophila , Factores de Transcripción E2F , Fosfoglicerato Quinasa , Animales , Cromatina , Drosophila/genética , Factores de Transcripción E2F/genética , Fosfoglicerato Quinasa/genética , Fosfoglicerato Quinasa/metabolismo , Regiones Promotoras Genéticas , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo
6.
Cancer Res ; 82(13): 2458-2471, 2022 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-35583996

RESUMEN

The transcription factor Forkhead box M1 (FoxM1) is overexpressed in breast cancers and correlates with poor prognosis. Mechanistically, FoxM1 associates with CBP to activate transcription and with Rb to repress transcription. Although the activating function of FoxM1 in breast cancer has been well documented, the significance of its repressive activity is poorly understood. Using CRISPR-Cas9 engineering, we generated a mouse model that expresses FoxM1-harboring point mutations that block binding to Rb while retaining its ability to bind CBP. Unlike FoxM1-null mice, mice harboring Rb-binding mutant FoxM1 did not exhibit significant developmental defects. The mutant mouse line developed PyMT-driven mammary tumors that were deficient in lung metastasis, which was tumor cell-intrinsic. Single-cell RNA-seq of the tumors revealed a deficiency in prometastatic tumor cells and an expansion of differentiated alveolar type tumor cells, and further investigation identified that loss of the FoxM1/Rb interaction caused enhancement of the mammary alveolar differentiation program. The FoxM1 mutant tumors also showed increased Pten expression, and FoxM1/Rb was found to activate Akt signaling by repressing Pten. In human breast cancers, expression of FoxM1 negatively correlated with Pten mRNA. Furthermore, the lack of tumor-infiltrating cells in FoxM1 mutant tumors appeared related to decreases in pro-metastatic tumor cells that express factors required for infiltration. These observations demonstrate that the FoxM1/Rb-regulated transcriptome is critical for the plasticity of breast cancer cells that drive metastasis, identifying a prometastatic role of Rb when bound to FoxM1. SIGNIFICANCE: This work provides new insights into how the interaction between FoxM1 and Rb facilitates the evolution of metastatic breast cancer cells by altering the transcriptome.


Asunto(s)
Neoplasias de la Mama , Proteína Forkhead Box M1/metabolismo , Factores de Transcripción Forkhead , Animales , Neoplasias de la Mama/patología , Diferenciación Celular/genética , Línea Celular Tumoral , Femenino , Proteína Forkhead Box M1/genética , Factores de Transcripción Forkhead/genética , Factores de Transcripción Forkhead/metabolismo , Regulación Neoplásica de la Expresión Génica , Humanos , Ratones , Transducción de Señal , Transcripción Genética
7.
Nat Commun ; 13(1): 899, 2022 02 16.
Artículo en Inglés | MEDLINE | ID: mdl-35173161

RESUMEN

Hexokinase 2 (HK2), which catalyzes the first committed step in glucose metabolism, is induced in cancer cells. HK2's role in tumorigenesis has been attributed to its glucose kinase activity. Here, we describe a kinase independent HK2 activity, which contributes to metastasis. HK2 binds and sequesters glycogen synthase kinase 3 (GSK3) and acts as a scaffold forming a ternary complex with the regulatory subunit of protein kinase A (PRKAR1a) and GSK3ß to facilitate GSK3ß phosphorylation and inhibition by PKA. Thus, HK2 functions as an A-kinase anchoring protein (AKAP). Phosphorylation by GSK3ß targets proteins for degradation. Consistently, HK2 increases the level and stability of GSK3 targets, MCL1, NRF2, and particularly SNAIL. In addition to GSK3 inhibition, HK2 kinase activity mediates SNAIL glycosylation, which prohibits its phosphorylation by GSK3. Finally, in mouse models of breast cancer metastasis, HK2 deficiency decreases SNAIL protein levels and inhibits SNAIL-mediated epithelial mesenchymal transition and metastasis.


Asunto(s)
Glucosa/metabolismo , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Hexoquinasa/metabolismo , Neoplasias/patología , Proteínas de Anclaje a la Quinasa A/metabolismo , Células A549 , Animales , Células CHO , Carcinogénesis/patología , Línea Celular Tumoral , Cricetulus , Subunidad RIalfa de la Proteína Quinasa Dependiente de AMP Cíclico/metabolismo , Desoxiglucosa/farmacología , Transición Epitelial-Mesenquimal/fisiología , Femenino , Glucógeno Sintasa Quinasa 3 beta/antagonistas & inhibidores , Glicosilación , Células HCT116 , Células HEK293 , Hexoquinasa/genética , Humanos , Ratones , Ratones Endogámicos BALB C , Proteína 1 de la Secuencia de Leucemia de Células Mieloides/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Metástasis de la Neoplasia/patología , Fosforilación/efectos de los fármacos , Ratas , Factores de Transcripción de la Familia Snail/metabolismo
8.
Elife ; 102021 07 12.
Artículo en Inglés | MEDLINE | ID: mdl-34251339

RESUMEN

The E2F transcription factors play a critical role in controlling cell fate. In Drosophila, the inactivation of E2F in either muscle or fat body results in lethality, suggesting an essential function for E2F in these tissues. However, the cellular and organismal consequences of inactivating E2F in these tissues are not fully understood. Here, we show that the E2F loss exerts both tissue-intrinsic and systemic effects. The proteomic profiling of E2F-deficient muscle and fat body revealed that E2F regulates carbohydrate metabolism, a conclusion further supported by metabolomic profiling. Intriguingly, animals with E2F-deficient fat body had a lower level of circulating trehalose and reduced storage of fat. Strikingly, a sugar supplement was sufficient to restore both trehalose and fat levels, and subsequently rescued animal lethality. Collectively, our data highlight the unexpected complexity of E2F mutant phenotype, which is a result of combining both tissue-specific and systemic changes that contribute to animal development.


Asunto(s)
Proteínas de Drosophila/metabolismo , Factores de Transcripción E2F/metabolismo , Cuerpo Adiposo/metabolismo , Factores de Transcripción/metabolismo , Animales , Metabolismo de los Hidratos de Carbono , Ciclo Celular , Drosophila , Proteínas de Drosophila/genética , Factores de Transcripción E2F/genética , Regulación del Desarrollo de la Expresión Génica , Metabolómica/métodos , Músculos/metabolismo , Fenotipo , Proteómica/métodos , Factores de Transcripción/genética , Transcripción Genética , Trehalosa/metabolismo
9.
Nat Commun ; 12(1): 1628, 2021 03 12.
Artículo en Inglés | MEDLINE | ID: mdl-33712615

RESUMEN

Tyrosine kinase inhibitors were found to be clinically effective for treatment of patients with certain subsets of cancers carrying somatic mutations in receptor tyrosine kinases. However, the duration of clinical response is often limited, and patients ultimately develop drug resistance. Here, we use single-cell RNA sequencing to demonstrate the existence of multiple cancer cell subpopulations within cell lines, xenograft tumors and patient tumors. These subpopulations exhibit epigenetic changes and differential therapeutic sensitivity. Recurrently overrepresented ontologies in genes that are differentially expressed between drug tolerant cell populations and drug sensitive cells include epithelial-to-mesenchymal transition, epithelium development, vesicle mediated transport, drug metabolism and cholesterol homeostasis. We show analysis of identified markers using the LINCS database to predict and functionally validate small molecules that target selected drug tolerant cell populations. In combination with EGFR inhibitors, crizotinib inhibits the emergence of a defined subset of EGFR inhibitor-tolerant clones. In this study, we describe the spectrum of changes associated with drug tolerance and inhibition of specific tolerant cell subpopulations with combination agents.


Asunto(s)
Resistencia a Antineoplásicos/genética , Tolerancia a Medicamentos/genética , Tolerancia a Medicamentos/fisiología , Neoplasias/genética , Neoplasias/metabolismo , Antineoplásicos/farmacología , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Colesterol/metabolismo , Combinación de Medicamentos , Descubrimiento de Drogas , Transición Epitelial-Mesenquimal/genética , Receptores ErbB/efectos de los fármacos , Receptores ErbB/genética , Regulación Neoplásica de la Expresión Génica , Xenoinjertos , Humanos , Mutación , Neoplasias/tratamiento farmacológico , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Tirosina Quinasas Receptoras/metabolismo , Células U937
10.
J Cell Sci ; 133(19)2020 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-32878945

RESUMEN

The receptor tyrosine kinase (RTK) pathway plays an essential role in development and disease by controlling cell proliferation and differentiation. Here, we profile the Drosophila larval brain by single-cell RNA-sequencing and identify Amalgam (Ama), which encodes a cell adhesion protein of the immunoglobulin IgLON family, as regulating the RTK pathway activity during glial cell development. Depletion of Ama reduces cell proliferation, affects glial cell type composition and disrupts the blood-brain barrier (BBB), which leads to hemocyte infiltration and neuronal death. We show that Ama depletion lowers RTK activity by upregulating Sprouty (Sty), a negative regulator of the RTK pathway. Knockdown of Ama blocks oncogenic RTK signaling activation in the Drosophila glioma model and halts malignant transformation. Finally, knockdown of a human ortholog of Ama, LSAMP, results in upregulation of SPROUTY2 in glioblastoma cell lines, suggesting that the relationship between Ama and Sty is conserved.


Asunto(s)
Proteínas de Drosophila/genética , Drosophila , Inmunoglobulinas/genética , Proteínas de la Membrana/genética , Animales , Encéfalo/metabolismo , Drosophila/metabolismo , Regulación del Desarrollo de la Expresión Génica , Larva/metabolismo , Proteínas de la Membrana/metabolismo , Neuroglía/metabolismo , Proteínas Tirosina Quinasas Receptoras/genética , Proteínas Tirosina Quinasas Receptoras/metabolismo
11.
Mol Cell ; 80(1): 87-101.e5, 2020 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-32931746

RESUMEN

Studies in three mouse models of breast cancer identified profound discrepancies between cell-autonomous and systemic Akt1- or Akt2-inducible deletion on breast cancer tumorigenesis and metastasis. Although systemic Akt1 deletion inhibits metastasis, cell-autonomous Akt1 deletion does not. Single-cell mRNA sequencing revealed that systemic Akt1 deletion maintains the pro-metastatic cluster within primary tumors but ablates pro-metastatic neutrophils. Systemic Akt1 deletion inhibits metastasis by impairing survival and mobilization of tumor-associated neutrophils. Importantly, either systemic or neutrophil-specific Akt1 deletion is sufficient to inhibit metastasis of Akt-proficient tumors. Thus, Akt1-specific inhibition could be therapeutic for breast cancer metastasis regardless of primary tumor origin. Systemic Akt2 deletion does not inhibit and exacerbates mammary tumorigenesis and metastasis, but cell-autonomous Akt2 deletion prevents breast cancer tumorigenesis by ErbB2. Elevated circulating insulin level induced by Akt2 systemic deletion hyperactivates tumor Akt, exacerbating ErbB2-mediated tumorigenesis, curbed by pharmacological reduction of the elevated insulin.


Asunto(s)
Neoplasias Mamarias Animales/enzimología , Neoplasias Mamarias Animales/patología , Proteínas Proto-Oncogénicas c-akt/metabolismo , Animales , Carcinogénesis/patología , Femenino , Eliminación de Gen , Humanos , Insulina/metabolismo , Isoenzimas/metabolismo , Metástasis de la Neoplasia , Neutrófilos/metabolismo , Receptor ErbB-2/metabolismo
12.
EMBO Rep ; 21(10): e49555, 2020 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-32815271

RESUMEN

In Drosophila, the wing disc-associated muscle precursor cells give rise to the fibrillar indirect flight muscles (IFM) and the tubular direct flight muscles (DFM). To understand early transcriptional events underlying this muscle diversification, we performed single-cell RNA-sequencing experiments and built a cell atlas of myoblasts associated with third instar larval wing disc. Our analysis identified distinct transcriptional signatures for IFM and DFM myoblasts that underlie the molecular basis of their divergence. The atlas further revealed various states of differentiation of myoblasts, thus illustrating previously unappreciated spatial and temporal heterogeneity among them. We identified and validated novel markers for both IFM and DFM myoblasts at various states of differentiation by immunofluorescence and genetic cell-tracing experiments. Finally, we performed a systematic genetic screen using a panel of markers from the reference cell atlas as an entry point and found a novel gene, Amalgam which is functionally important in muscle development. Our work provides a framework for leveraging scRNA-seq for gene discovery and details a strategy that can be applied to other scRNA-seq datasets.


Asunto(s)
Proteínas de Drosophila , Drosophila , Animales , Drosophila/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Desarrollo de Músculos/genética , Alas de Animales
13.
Cell Rep ; 26(3): 702-719.e6, 2019 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-30650361

RESUMEN

The importance of the retinoblastoma tumor suppressor protein pRB in cell cycle control is well established. However, less is known about its role in differentiation during animal development. Here, we investigated the role of Rbf, the Drosophila pRB homolog, in adult skeletal muscles. We found that the depletion of Rbf severely reduced muscle growth and altered myofibrillogenesis but only minimally affected myoblast proliferation. We identified an Rbf-dependent transcriptional program in late muscle development that is distinct from the canonical role of Rbf in cell cycle control. Unexpectedly, Rbf acts as a transcriptional activator of the myogenic and metabolic genes in the growing muscles. The genomic regions bound by Rbf contained the binding sites of several factors that genetically interacted with Rbf by modulating Rbf-dependent phenotype. Thus, our results reveal a distinctive role for Rbf as a direct activator of the myogenic transcriptional program that drives late muscle differentiation.


Asunto(s)
Proteínas de Drosophila/genética , Desarrollo de Músculos/genética , Músculo Esquelético/metabolismo , Proteína de Retinoblastoma/genética , Factores de Transcripción/metabolismo , Animales , Diferenciación Celular , Drosophila , Proteína de Retinoblastoma/metabolismo , Factores de Transcripción/genética
14.
Nat Commun ; 9(1): 5024, 2018 11 27.
Artículo en Inglés | MEDLINE | ID: mdl-30479347

RESUMEN

The function of Retinoblastoma tumor suppressor (pRB) is greatly influenced by the cellular context, therefore the consequences of pRB inactivation are cell-type-specific. Here we employ single cell RNA-sequencing (scRNA-seq) to profile the impact of an Rbf mutation during Drosophila eye development. First, we build a catalogue of 11,500 wild type eye disc cells containing major known cell types. We find a transcriptional switch occurring in differentiating photoreceptors at the time of axonogenesis. Next, we map a cell landscape of Rbf mutant and identify a mutant-specific cell population that shows intracellular acidification due to increase in glycolytic activity. Genetic experiments demonstrate that such metabolic changes, restricted to this unique Rbf mutant population, sensitize cells to apoptosis and define the pattern of cell death in Rbf mutant eye disc. Thus, these results illustrate how scRNA-seq can be applied to dissect mutant phenotypes.


Asunto(s)
Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Mutación/genética , Proteína de Retinoblastoma/genética , Análisis de Secuencia de ARN/métodos , Análisis de la Célula Individual/métodos , Factores de Transcripción/genética , Animales , Apoptosis , Axones/metabolismo , Ojo/citología , Larva/citología , Modelos Biológicos , Neurogénesis , Células Fotorreceptoras de Invertebrados/metabolismo , Transcripción Genética
15.
Dev Cell ; 43(6): 689-703.e5, 2017 12 18.
Artículo en Inglés | MEDLINE | ID: mdl-29233476

RESUMEN

To understand the consequences of the complete elimination of E2F regulation, we profiled the proteome of Drosophila dDP mutants that lack functional E2F/DP complexes. The results uncovered changes in the larval fat body, a differentiated tissue that grows via endocycles. We report an unexpected mechanism of E2F/DP action that promotes quiescence in this tissue. In the fat body, dE2F/dDP limits cell-cycle progression by suppressing DNA damage responses. Loss of dDP upregulates dATM, allowing cells to sense and repair DNA damage and increasing replication of loci that are normally under-replicated in wild-type tissues. Genetic experiments show that ectopic dATM is sufficient to promote DNA synthesis in wild-type fat body cells. Strikingly, reducing dATM levels in dDP-deficient fat bodies restores cell-cycle control, improves tissue morphology, and extends animal development. These results show that, in some cellular contexts, dE2F/dDP-dependent suppression of DNA damage signaling is key for cell-cycle control and needed for normal development.


Asunto(s)
Proteínas de la Ataxia Telangiectasia Mutada/biosíntesis , Proteínas de Drosophila/metabolismo , Factores de Transcripción E2F/genética , Factores de Transcripción E2F/metabolismo , Cuerpo Adiposo/fisiología , Transactivadores/metabolismo , Animales , Proteínas de la Ataxia Telangiectasia Mutada/genética , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , División Celular/fisiología , Replicación del ADN , Proteínas de Unión al ADN/metabolismo , Drosophila , Proteínas de Drosophila/biosíntesis , Proteínas de Drosophila/genética , Cuerpo Adiposo/citología , Proteínas Serina-Treonina Quinasas , Transactivadores/genética , Transcriptoma
16.
Cell Rep ; 20(13): 3123-3134, 2017 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-28954229

RESUMEN

The cellular abundance of mature microRNAs (miRNAs) is dictated by the efficiency of nuclear processing of primary miRNA transcripts (pri-miRNAs) into pre-miRNA intermediates. The Microprocessor complex of Drosha and DGCR8 carries this out, but it has been unclear what controls Microprocessor's differential processing of various pri-miRNAs. Here, we show that Drosophila DGCR8 (Pasha) directly associates with the C-terminal domain of the RNA polymerase II elongation complex when it is phosphorylated by the Cdk9 kinase (pTEFb). When association is blocked by loss of Cdk9 activity, a global change in pri-miRNA processing is detected. Processing of pri-miRNAs with a UGU sequence motif in their apical junction domain increases, while processing of pri-miRNAs lacking this motif decreases. Therefore, phosphorylation of RNA polymerase II recruits Microprocessor for co-transcriptional processing of non-UGU pri-miRNAs that would otherwise be poorly processed. In contrast, UGU-positive pri-miRNAs are robustly processed by Microprocessor independent of RNA polymerase association.


Asunto(s)
MicroARNs/metabolismo , Microcomputadores/tendencias , ARN Polimerasa II/genética , Humanos , MicroARNs/genética , ARN Polimerasa II/metabolismo
17.
Nat Commun ; 7: 10509, 2016 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-26823289

RESUMEN

The E2F transcription factor is a key cell cycle regulator. However, the inactivation of the entire E2F family in Drosophila is permissive throughout most of animal development until pupation when lethality occurs. Here we show that E2F function in the adult skeletal muscle is essential for animal viability since providing E2F function in muscles rescues the lethality of the whole-body E2F-deficient animals. Muscle-specific loss of E2F results in a significant reduction in muscle mass and thinner myofibrils. We demonstrate that E2F is dispensable for proliferation of muscle progenitor cells, but is required during late myogenesis to directly control the expression of a set of muscle-specific genes. Interestingly, E2f1 provides a major contribution to the regulation of myogenic function, while E2f2 appears to be less important. These findings identify a key function of E2F in skeletal muscle required for animal viability, and illustrate how the cell cycle regulator is repurposed in post-mitotic cells.


Asunto(s)
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Factor de Transcripción E2F1/metabolismo , Factor de Transcripción E2F2/metabolismo , Desarrollo de Músculos/genética , Músculos/embriología , Transactivadores/metabolismo , Animales , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Factor de Transcripción E2F1/genética , Factor de Transcripción E2F2/genética , Femenino , Regulación del Desarrollo de la Expresión Génica/fisiología , Técnicas de Silenciamiento del Gen , Larva , Masculino , Pupa , Transactivadores/genética
18.
RNA ; 22(1): 129-38, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26554028

RESUMEN

The importance of microRNAs in gene expression and disease is well recognized. However, what is less appreciated is that almost half of miRNA genes are organized in polycistronic clusters and are therefore coexpressed. The mir-11∼998 cluster consists of two miRNAs, miR-11 and miR-998. Here, we describe a novel layer of regulation that links the processing and expression of miR-998 to the presence of the mir-11 gene. We show that the presence of miR-11 in the pri-miRNA is required for processing by Drosha, and deletion of mir-11 prevents the expression of miR-998. Replacing mir-11 with an unrelated miRNA rescued miR-998 expression in vivo and in vitro, as did expressing miR-998 from a shorter, more canonical miRNA scaffold. The embedded regulation of miR-998 is functionally important because unchecked miR-998 expression in the absence of miR-11 resulted in pleiotropic developmental defects. This novel regulation of expression of miRNAs within a cluster is not limited to the mir-11∼998 cluster and, thus, likely reflects the more general cis-regulation of expression of individual miRNAs. Collectively, our results uncover a novel layer of regulation within miRNA clusters that tempers the functions of the individual miRNAs. Unlinking their expression has the potential to change the expression of multiple miRNA targets and shift a biological response.


Asunto(s)
Regulación de la Expresión Génica , MicroARNs/genética , Alelos , Animales , Células Cultivadas , Drosophila
19.
Cancer Res ; 75(4): 619-23, 2015 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-25634216

RESUMEN

The family of E2F transcription factors is the key downstream target of the retinoblastoma tumor suppressor protein (pRB), which is frequently inactivated in human cancer. E2F is best known for its role in cell-cycle regulation and triggering apoptosis. However, E2F binds to thousands of genes and, thus, could directly influence a number of biologic processes. Given the plethora of potential E2F targets, the major challenge in the field is to identify specific processes in which E2F plays a functional role and the contexts in which a particular subset of E2F targets dictates a biologic outcome. Recent studies implicated E2F in regulation of expression of mitochondria-associated genes. The loss of such regulation results in severe mitochondrial defects. The consequences become evident during irradiation-induced apoptosis, where E2F-deficient cells are insensitive to cell death despite induction of canonical apoptotic genes. Thus, this novel function of E2F may have a major impact on cell viability, and it is independent of induction of apoptotic genes. Here, we discuss the implications of these findings in cancer biology.


Asunto(s)
Factores de Transcripción E2F/genética , Mitocondrias/genética , Neoplasias/genética , Proteína de Retinoblastoma/genética , Apoptosis/genética , Puntos de Control del Ciclo Celular/genética , Supervivencia Celular/genética , Factores de Transcripción E2F/biosíntesis , Factores de Transcripción E2F/metabolismo , Regulación Neoplásica de la Expresión Génica , Humanos , Mitocondrias/patología , Neoplasias/patología , Proteína de Retinoblastoma/biosíntesis , Proteína de Retinoblastoma/metabolismo , Transcripción Genética , Proteína p53 Supresora de Tumor/genética
20.
PLoS Genet ; 10(7): e1004493, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25058496

RESUMEN

The importance of microRNAs in the regulation of various aspects of biology and disease is well recognized. However, what remains largely unappreciated is that a significant number of miRNAs are embedded within and are often co-expressed with protein-coding host genes. Such a configuration raises the possibility of a functional interaction between a miRNA and the gene it resides in. This is exemplified by the Drosophila melanogaster dE2f1 gene that harbors two miRNAs, mir-11 and mir-998, within its last intron. miR-11 was demonstrated to limit the proapoptotic function of dE2F1 by repressing cell death genes that are directly regulated by dE2F1, however the biological role of miR-998 was unknown. Here we show that one of the functions of miR-998 is to suppress dE2F1-dependent cell death specifically in rbf mutants by elevating EGFR signaling. Mechanistically, miR-998 operates by repressing dCbl, a negative regulator of EGFR signaling. Significantly, dCbl is a critical target of miR-998 since dCbl phenocopies the effects of miR-998 on dE2f1-dependent apoptosis in rbf mutants. Importantly, this regulation is conserved, as the miR-998 seed family member miR-29 repressed c-Cbl, and enhanced MAPK activity and wound healing in mammalian cells. Therefore, the two intronic miRNAs embedded in the dE2f1 gene limit the apoptotic function of dE2f1, but operate in different contexts and act through distinct mechanisms. These results also illustrate that examining an intronic miRNA in the context of its host's function can be valuable in elucidating the biological function of the miRNA, and provide new information about the regulation of the host gene itself.


Asunto(s)
Diferenciación Celular/genética , Proteínas de Drosophila/metabolismo , Factores de Transcripción E2F/metabolismo , Receptores ErbB/metabolismo , MicroARNs/metabolismo , Receptores de Péptidos de Invertebrados/metabolismo , Animales , Apoptosis , Proteínas de Drosophila/genética , Drosophila melanogaster , Factores de Transcripción E2F/genética , Receptores ErbB/genética , Regulación del Desarrollo de la Expresión Génica , Intrones/genética , MicroARNs/genética , Proteínas Proto-Oncogénicas c-cbl/metabolismo , Receptores de Péptidos de Invertebrados/genética , Transducción de Señal/genética , Factores de Transcripción
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...