Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Mol Cell ; 84(3): 522-537.e8, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38151017

RESUMEN

The anti-cancer target hRpn13 is a proteasome substrate receptor. However, hRpn13-targeting molecules do not impair its interaction with proteasomes or ubiquitin, suggesting other critical cellular activities. We find that hRpn13 depletion causes correlated proteomic and transcriptomic changes, with pronounced effects in myeloma cells for cytoskeletal and immune response proteins and bone-marrow-specific arginine deiminase PADI4. Moreover, a PROTAC against hRpn13 co-depletes PADI4, histone deacetylase HDAC8, and DNA methyltransferase MGMT. PADI4 binds and citrullinates hRpn13 and proteasomes, and proteasomes from PADI4-inhibited myeloma cells exhibit reduced peptidase activity. When off proteasomes, hRpn13 can bind HDAC8, and this interaction inhibits HDAC8 activity. Further linking hRpn13 to transcription, its loss reduces nuclear factor κB (NF-κB) transcription factor p50, which proteasomes generate by cleaving its precursor protein. NF-κB inhibition depletes hRpn13 interactors PADI4 and HDAC8. Altogether, we find that hRpn13 acts dually in protein degradation and expression and that proteasome constituency and, in turn, regulation varies by cell type.


Asunto(s)
Histona Desacetilasas , Péptidos y Proteínas de Señalización Intracelular , FN-kappa B , Arginina Deiminasa Proteína-Tipo 4 , Factores de Transcripción , Humanos , Epigénesis Genética , Histona Desacetilasas/genética , Histona Desacetilasas/metabolismo , FN-kappa B/genética , FN-kappa B/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteoma/metabolismo , Proteómica , Proteínas Represoras/metabolismo , Factores de Transcripción/metabolismo , Transcriptoma , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Arginina Deiminasa Proteína-Tipo 4/metabolismo , Línea Celular Tumoral
2.
Mol Cell Biol ; 42(12): e0028922, 2022 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-36342127

RESUMEN

PURPL is a p53-induced lncRNA that suppresses basal p53 levels. Here, we investigated PURPL upon p53 activation in liver cancer cells, where it is expressed at significantly higher levels than other cell types. Using isoform sequencing, we discovered novel PURPL transcripts that have a retained intron and/or previously unannotated exons. To determine PURPL function upon p53 activation, we performed transcriptome sequencing (RNA-Seq) after depleting PURPL using CRISPR interference (CRISPRi), followed by Nutlin treatment to induce p53. Strikingly, although loss of PURPL in untreated cells altered the expression of only 7 genes, loss of PURPL resulted in altered expression of ~800 genes upon p53 activation, revealing a context-dependent function of PURPL. Pathway analysis suggested that PURPL is important for fine-tuning the expression of specific genes required for mitosis. Consistent with these results, we observed a significant decrease in the percentage of mitotic cells upon PURPL depletion. Collectively, these data identify novel transcripts from the PURPL locus and suggest that PURPL delicately moderates the expression of mitotic genes in the context of p53 activation to control cell cycle arrest.


Asunto(s)
ARN Largo no Codificante , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Transcriptoma/genética , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo , Puntos de Control del Ciclo Celular/genética , Exones/genética
3.
Viruses ; 14(3)2022 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-35336943

RESUMEN

Herpes simplex virus type 2 (HSV-2) is a common causative agent of genital tract infections. Moreover, HSV-2 and HIV infection can mutually increase the risk of acquiring another virus infection. Due to the high GC content and highly repetitive regions in HSV-2 genomes, only the genomes of four strains have been completely sequenced (HG52, 333, SD90e, and MS). Strain G is commonly used for HSV-2 research, but only a partial genome sequence has been assembled with Illumina sequencing reads. In the current study, we de novo assembled and annotated the complete genome of strain G using PacBio long sequencing reads, which can span the repetitive regions, analyzed the 'α' sequence, which plays key roles in HSV-2 genome circulation, replication, cleavage, and packaging of progeny viral DNA, identified the packaging signals homologous to HSV-1 within the 'α' sequence, and determined both termini of the linear genome and cleavage site for the process of concatemeric HSV-2 DNA produced via rolling-circle replication. In addition, using Oxford Nanopore Technology sequencing reads, we visualized four HSV-2 genome isomers at the nucleotide level for the first time. Furthermore, the coding sequences of HSV-2 strain G have been compared with those of HG52, 333, and MS. Moreover, phylogenetic analysis of strain G and other diverse HSV-2 strains has been conducted to determine their evolutionary relationship. The results will aid clinical research and treatment development of HSV-2.


Asunto(s)
Infecciones por VIH , Herpes Simple , ADN Viral/genética , Genoma Viral , Infecciones por VIH/genética , Herpes Simple/genética , Herpesvirus Humano 2/genética , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Filogenia
4.
Nat Commun ; 12(1): 7318, 2021 12 16.
Artículo en Inglés | MEDLINE | ID: mdl-34916494

RESUMEN

Proteasome substrate receptor hRpn13 is a promising anti-cancer target. By integrated in silico and biophysical screening, we identified a chemical scaffold that binds hRpn13 with non-covalent interactions that mimic the proteasome and a weak electrophile for Michael addition. hRpn13 Pru domain binds proteasomes and ubiquitin whereas its DEUBAD domain binds deubiquitinating enzyme UCHL5. NMR revealed lead compound XL5 to interdigitate into a hydrophobic pocket created by lateral movement of a Pru ß-hairpin with an exposed end for Proteolysis Targeting Chimeras (PROTACs). Implementing XL5-PROTACs as chemical probes identified a DEUBAD-lacking hRpn13 species (hRpn13Pru) present naturally with cell type-dependent abundance. XL5-PROTACs preferentially target hRpn13Pru, causing its ubiquitination. Gene-editing and rescue experiments established hRpn13 requirement for XL5-PROTAC-triggered apoptosis. These data establish hRpn13 as an anti-cancer target for multiple myeloma and introduce an hRpn13-targeting scaffold that can be optimized for preclinical trials against hRpn13Pru-producing cancer types.


Asunto(s)
Péptidos y Proteínas de Señalización Intracelular/química , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Mieloma Múltiple/metabolismo , Ubiquitinación , Apoptosis , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Mieloma Múltiple/genética , Complejo de la Endopetidasa Proteasomal/metabolismo , Factores de Transcripción/metabolismo , Activación Transcripcional , Ubiquitina/metabolismo
5.
Biotechniques ; 66(6): 290-294, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-31091999

RESUMEN

Workflows in NGS facilities require high-standard practices and high-throughput pipelines to process the large number of samples received in a timely manner. Downstream protocols such as NGS library preparation require accurate estimation of nucleic acid concentrations, which can be achieved using fluorescent dye-based nucleic acid measurement. Here, we report a protocol for preparing a 384-well Quant-iT PicoGreen assay. The protocol allows the concentrations of 184 DNA samples to be measured simultaneously in duplicate in only 1 h using an Eppendorf epMotion 5075 liquid handling system. The advantages of this high-throughput approach include a reduction in both reagents (10x less reagents compared to a standard protocol) and time (3 h for 384 samples compared with 3 days).


Asunto(s)
ADN/genética , Biblioteca de Genes , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , ADN/análisis , Colorantes Fluorescentes/análisis , Secuenciación de Nucleótidos de Alto Rendimiento/instrumentación , Compuestos Orgánicos/análisis , Flujo de Trabajo
6.
Mol Ecol ; 28(7): 1826-1841, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30714238

RESUMEN

Resident microorganisms are known to influence the fitness and traits of animals under controlled laboratory conditions, but the relevance of these findings to wild animals is uncertain. This study investigated the host functional correlates of microbiota composition in a wild community of three sympatric species of mycophagous drosophilid flies, Drosophila falleni, Drosophila neotestacea and Drosophila putrida. Specifically, we quantified bacterial communities and host transcriptomes by parallel 16S rRNA gene amplicon sequencing and RNA-Seq of individual flies. Among-fly variation in microbiota composition did not partition strongly by sex or species, and included multiple modules, that is, sets of bacterial taxa whose abundance varied in concert across different flies. The abundance of bacteria in several modules varied significantly with multiple host transcripts, especially in females, but the identity of the correlated host transcriptional functions differed with host species, including epithelial barrier function in D. falleni, muscle function in D. putrida, and insect growth and development in D. neotestacea. In D. neotestacea, which harbours the endosymbionts Wolbachia and Spiroplasma, Wolbachia promotes the abundance of Spiroplasma, and is positively correlated with abundance of Lactobacillales and Bacteroidales. Furthermore, most correlations between host gene expression and relative abundance of bacterial modules were co-correlated with abundance of Wolbachia (but not Spiroplasma), indicative of an interdependence between host functional traits, microbiota composition and Wolbachia abundance in this species. These data suggest that, in these natural populations of drosophilid flies, different host species interact with microbial communities in functionally different ways that can vary with the abundance of endosymbionts.


Asunto(s)
Bacterias/clasificación , Drosophila/microbiología , Microbiota , Wolbachia/genética , Animales , Drosophila/clasificación , ARN Ribosómico 16S/genética , Spiroplasma/genética , Simbiosis , Simpatría , Transcriptoma
7.
Microb Ecol ; 74(3): 722-734, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28386769

RESUMEN

Most insects are associated with bacterial symbionts. The bacterial diversity and community composition within hosts may play an important role in shaping insect population biology, ecology and evolution. We focussed on the bacterial microbiome of the Australian fig homotomid Mycopsylla fici (Hemiptera: Psylloidea), which can cause defoliation of its only host tree, Ficus macrophylla. This sap-feeding insect is native to mainland Australia and Lord Howe Island (LHI) but also occurs where its host has been planted, notably in New Zealand. By using a high-throughput 16S rDNA amplicon sequencing approach, we compared the bacterial diversity and community composition in individual adult males of four host populations, Sydney, Brisbane, LHI and Auckland. We also compared males, females and nymphs of the Sydney population. The microbiome of M. fici was simple and consisted mostly of the following three maternally inherited endosymbiont species: the primary endosymbiont Carsonella, a secondary (S-) endosymbiont and Wolbachia. However, the relative abundance of their sequence reads varied between host populations, except for similarities between Sydney and Auckland. In addition, insects from Sydney and Auckland had identical bacterial strains supporting the hypothesis that Sydney is the source population for Auckland. In contrast, mainland and LHI populations harboured the same S-endosymbiont, co-diverged Carsonella but different Wolbachia strains. Besides detecting endosymbiont-specific patterns of either co-evolution or horizontal acquisition, our study highlights that relative abundance of maternally inherited endosymbionts should also be taken into account when studying bacterial communities across host populations, as variations in bacterial density may impact host biology and ecology.


Asunto(s)
Bacterias/clasificación , Fenómenos Fisiológicos Bacterianos , Hemípteros/microbiología , Microbiota , Simbiosis , Animales , Australia , Bacterias/genética , Femenino , Ficus/crecimiento & desarrollo , Hemípteros/crecimiento & desarrollo , Herbivoria , Secuenciación de Nucleótidos de Alto Rendimiento , Masculino , Nueva Zelanda , Ninfa/crecimiento & desarrollo , Ninfa/microbiología , ARN Bacteriano/genética , ARN Ribosómico 16S/genética
8.
FEMS Microbiol Ecol ; 92(12)2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27702765

RESUMEN

While obligate primary (P-) endosymbionts usually cospeciate with their insect hosts, less is known about codiversification of secondary (S-) endosymbionts that are generally considered facultative. Typically, insects of the superfamily Psylloidea harbour one P- (Carsonella) and at least one S-endosymbiont, thought to compensate for Carsonella genome reduction. Most codiversification studies have used phylogenies of psyllids and their endosymbionts across and within host families or genera, but few have explored patterns within species. We focussed on P- and S-endosymbionts of three Mycopsylla (Homotomidae) species to explore whether they have congruent phylogenies and within-species geographic structures. The P-endosymbiont Carsonella, a S-endosymbiont and Wolbachia all had 100% prevalence, while Arsenophonus was only found in one species at low prevalence. Congruent phylogenies of Mycopsylla and P-endosymbionts across populations and species support strict cospeciation. S-endosymbiont phylogenies were also congruent across host species but low genetic variation in the S-endosymbiont was not correlated with host phylogeography, possibly due to a shorter evolutionary association. Between species, Wolbachia and Mycopsylla phylogenies were incongruent, probably due to horizontal transmission events. Our study is the first to explore endosymbionts of Mycopsylla and further supports the codivergence of Psylloidea hosts and P-endosymbionts, with obligate host interactions for both P- and S-endosymbionts.


Asunto(s)
Halomonadaceae/aislamiento & purificación , Hemípteros/microbiología , Simbiosis/genética , Wolbachia/aislamiento & purificación , Animales , Composición de Base/genética , Evolución Biológica , ADN Mitocondrial/genética , Enterobacteriaceae/clasificación , Enterobacteriaceae/genética , Enterobacteriaceae/aislamiento & purificación , Evolución Molecular , Ficus , Halomonadaceae/genética , Filogenia , Filogeografía , Wolbachia/genética
9.
Environ Microbiol ; 18(8): 2591-603, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27114069

RESUMEN

Coevolution between insects and bacterial endosymbionts contributes to the success of many insect lineages. For the first time, we tested for phylogenetic codivergence across multiple taxonomic scales, from within genera to superfamily between 36 psyllid species of seven recognised families (Hemiptera: Psylloidea), their exclusive primary endosymbiont Carsonella and more diverse secondary endosymbionts (S-endosymbionts). Within Aphalaridae, we found that Carsonella and S-endosymbionts were fixed in one Glycaspis and 12 Cardiaspina populations. The dominant S-endosymbiont was Arsenophonus, while Sodalis was detected in one Cardiaspina species. We demonstrated vertical transmission for Carsonella and Arsenophonus in three Cardiaspina species. We found strong support for strict cospeciation and validated the informative content of Carsonella as extended host genome for inference of psyllid relationships. However, S-endosymbiont and host phylogenies were incongruent, and displayed signs of host switching and endosymbiont replacement. The high incidence of Arsenophonus in psyllids and other plant sap-feeding Hemiptera may be due to repeated host switching within this group. In two psyllid lineages, Arsenophonus and Sodalis genes exhibited accelerated evolutionary rates and AT-biases characteristic of long-term host associations. Together with strict vertical transmission and 100% prevalence within host populations, our results suggest an obligate, and not facultative, symbiosis between psyllids and some S-endosymbionts.


Asunto(s)
Enterobacteriaceae/crecimiento & desarrollo , Enterobacteriaceae/genética , Hemípteros/microbiología , Simbiosis/genética , Animales , Evolución Biológica , Filogenia
10.
Int J Parasitol ; 41(1): 43-50, 2011 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-20691186

RESUMEN

Explanations for the evolution of pathogen-induced fecundity reduction usually rely on a common principle: the trade-off between host longevity and reproduction. Recent advances in nutritional research have, however, challenged this assumption and shown that longevity and reproduction are not inextricably linked. In this study, we showed that beetles infected by cysticercoids of the tapeworm Hymenolepis diminuta increased their total food intake and, more particularly, their carbohydrate consumption compared with uninfected insects. This increased intake was only pronounced during the first 12 days p.i., when the parasite grows and develops into a mature metacestode. Despite consuming more nutrients, infected individuals sustained lower levels of body lipid and were less efficient at converting ingested protein to body protein. However they demonstrated a capacity to compose a diet that sustained high levels of reproductive output unless confined to foods that were nutritionally dilute. We did not find any indication that macronutrient intakes had an effect on host pro-phenoloxidase activity; however, phenoloxidase activity was significantly affected by protein intake. Our results showed that when offered nutritionally complementary diets, infected hosts do not systematically suffer a reduction in fecundity. Thus, in our view, the assumption that a reduction in host reproduction represents an adaptive response by the host or the parasite to divert resources away from reproduction toward other traits should be reassessed.


Asunto(s)
Escarabajos/fisiología , Escarabajos/parasitología , Hymenolepis diminuta/patogenicidad , Animales , Catecol Oxidasa/metabolismo , Escarabajos/química , Precursores Enzimáticos/metabolismo , Conducta Alimentaria , Fertilidad , Lípidos/análisis , Monofenol Monooxigenasa/metabolismo , Proteínas/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...