Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
PLoS Pathog ; 20(9): e1012552, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39259763

RESUMEN

In prion diseases (PrDs), aggregates of misfolded prion protein (PrPSc) accumulate not only in the brain but also in extraneural organs. This raises the question whether prion-specific pathologies arise also extraneurally. Here we sequenced mRNA transcripts in skeletal muscle, spleen and blood of prion-inoculated mice at eight timepoints during disease progression. We detected gene-expression changes in all three organs, with skeletal muscle showing the most consistent alterations. The glutamate-ammonia ligase (GLUL) gene exhibited uniform upregulation in skeletal muscles of mice infected with three distinct scrapie prion strains (RML, ME7, and 22L) and in victims of human sporadic Creutzfeldt-Jakob disease. GLUL dysregulation was accompanied by changes in glutamate/glutamine metabolism, leading to reduced glutamate levels in skeletal muscle. None of these changes were observed in skeletal muscle of humans with amyotrophic lateral sclerosis, Alzheimer's disease, or dementia with Lewy bodies, suggesting that they are specific to prion diseases. These findings reveal an unexpected metabolic dimension of prion infections and point to a potential role for GLUL dysregulation in the glutamate/glutamine metabolism in prion-affected skeletal muscle.

2.
EMBO Mol Med ; 16(9): 2024-2042, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39080493

RESUMEN

Extracellularly released molecular inflammasome assemblies -ASC specks- cross-seed Aß amyloid in Alzheimer's disease. Here we show that ASC governs the extent of inflammation-induced amyloid A (AA) amyloidosis, a systemic disease caused by the aggregation and peripheral deposition of the acute-phase reactant serum amyloid A (SAA) in chronic inflammatory conditions. Using super-resolution microscopy, we found that ASC colocalized tightly with SAA in human AA amyloidosis. Recombinant ASC specks accelerated SAA fibril formation and mass spectrometry after limited proteolysis showed that ASC interacts with SAA via its pyrin domain (PYD). In a murine model of inflammatory AA amyloidosis, splenic amyloid load was conspicuously decreased in Pycard-/- mice which lack ASC. Treatment with anti-ASCPYD antibodies decreased amyloid loads in wild-type mice suffering from AA amyloidosis. The prevalence of natural anti-ASC IgG (-logEC50 ≥ 2) in 19,334 hospital patients was <0.01%, suggesting that anti-ASC antibody treatment modalities would not be confounded by natural autoimmunity. These findings expand the role played by ASC and IL-1 independent inflammasome employments to extraneural proteinopathies and suggest that anti-ASC immunotherapy may contribute to resolving such diseases.


Asunto(s)
Amiloidosis , Proteínas Adaptadoras de Señalización CARD , Inflamasomas , Proteína Amiloide A Sérica , Animales , Proteína Amiloide A Sérica/metabolismo , Proteínas Adaptadoras de Señalización CARD/metabolismo , Proteínas Adaptadoras de Señalización CARD/genética , Amiloidosis/metabolismo , Amiloidosis/patología , Humanos , Inflamasomas/metabolismo , Ratones , Ratones Noqueados , Modelos Animales de Enfermedad , Inflamación/metabolismo , Inflamación/patología , Agregado de Proteínas , Ratones Endogámicos C57BL
3.
EMBO Mol Med ; 15(1): e16789, 2023 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-36382364

RESUMEN

Many efforts targeting amyloid-ß (Aß) plaques for the treatment of Alzheimer's Disease thus far have resulted in failures during clinical trials. Regional and temporal heterogeneity of efficacy and dependence on plaque maturity may have contributed to these disappointing outcomes. In this study, we mapped the regional and temporal specificity of various anti-Aß treatments through high-resolution light-sheet imaging of electrophoretically cleared brains. We assessed the effect on amyloid plaque formation and growth in Thy1-APP/PS1 mice subjected to ß-secretase inhibitors, polythiophenes, or anti-Aß antibodies. Each treatment showed unique spatiotemporal Aß clearance, with polythiophenes emerging as a potent anti-Aß compound. Furthermore, aligning with a spatial-transcriptomic atlas revealed transcripts that correlate with the efficacy of each Aß therapy. As observed in this study, there is a striking dependence of specific treatments on the location and maturity of Aß plaques. This may also contribute to the clinical trial failures of Aß-therapies, suggesting that combinatorial regimens may be significantly more effective in clearing amyloid deposition.


Asunto(s)
Enfermedad de Alzheimer , Microscopía , Ratones , Animales , Ratones Transgénicos , Péptidos beta-Amiloides/metabolismo , Enfermedad de Alzheimer/tratamiento farmacológico , Encéfalo/metabolismo , Placa Amiloide/tratamiento farmacológico , Modelos Animales de Enfermedad , Precursor de Proteína beta-Amiloide , Presenilina-1/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA